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Vibrations and Waves

Musial Instruments vibrating object Radiation Wave Propagation

Relevant Physical Parameters:

• Density or mass

• Tension or internal stress

• Elastic properties

• Physical dimensions 

Vibration: time-periodic motion of a mechanical object

Wave: propagation of energy and information via a space

Sensor



Vibrations and Waves: that we want to avoid.. 

Tacoma Bridge Seismic Waves

We might want to remove vibrations and waves at the macroscale..



Vibrations and Waves: for fun

We can take advantage of waves, but be careful about sharks !!!



Vibrations and Waves at the Nanoscale

Nat. Nanotechnol. 4, 861-867 (2009) Phys. Rev. Lett, 9, 2012 (2018) Nat. Commun, 9, 2012 (2018)

Nature 472, 69 – 73 (2011)Science 349, 952 – 955 (2015)



• small device footprint (𝜆𝑝ℎ𝑜𝑛𝑜𝑛𝑠 ≪ 𝜆𝑝ℎ𝑜𝑡𝑜𝑛𝑠)

• high-frequency operations

• low-energy loss (high Q)

• electromechanical and optomechanical coupling 

• coupling with qubits, spins, charges, etc. 

Nanomechanical Systems and Their Merits

Nanomechanical Systems are 

perfect platforms for 

interconnecting different 

physical systems!



Mechanical Vibrations and Waves for Quantum Technology

levitated nanoparticles 

in optical traps

Aspelmeyer Group

Motional quantum ground state: 

Science, 367, 892-895 (2020) 
Ground state cooling: J.D. Teufel, e

t al. Nature 471, 204-208(2011)

NIST

microwave circuit 

optomechanics

Superconducting qubit and 

surface acoustic wave resonator

Chicago

Qubit-SAW phonon coupling: Nature 563, 661-665 (2018)



Mechanical Vibrations of a Single Body
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Single degree of freedom
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Mechanical Vibrations of a Single Body with Damping
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If we calculate the steady state solution with 

we obtain 

𝑥 = 𝑥 𝜔 sin(𝜔𝑡 + 𝜙)

𝜙 = tan−1(
𝜔Γ

𝜔2 − 𝜔0
2)

Note: • a single mass system has one resonant frequency

• the amplitude goes maximum at the resonance

• low damping leads to large displacement 

𝑥 𝜔 =
𝐹0

𝑚 𝜔Γ 2 + 𝜔0
2 − 𝜔2 2

Mechanical Vibrations of a Single Body with Damping



𝑥

m

k

c

m
𝐹 𝑡 = 𝐹0 sin(𝜔𝑡)

When we analyze resonance data from experiments, we fit to the 

Lorentzian curve to obtain the resonance frequency and the 

damping rate. How then the displacement response is related to the 

Lorentzian?

Let’s begin with the displacement spectrum we obtained previously. 

𝑥 𝜔 =
𝐹0

𝑚 𝜔Γ 2 + 𝜔0
2 − 𝜔2 2

Around the resonance 𝜔 ≈ 𝜔0, we can use the following approximation and insert this to the displacement equation.   

𝜔0
2 −𝜔2 ≈ 𝜔0 +𝜔 𝜔0 − 𝜔 = 2𝜔0 𝜔0 −𝜔

The displacement function then becomes

𝑥 𝜔 =
𝐹0

𝑚 𝜔0Γ
2 + 2𝜔0 𝜔0 − 𝜔

2
=

𝐹0

2𝑚𝜔0
Γ
2

2

+ 𝜔0 −𝜔 2

Mechanical Vibrations of a Single Body with Damping



𝑥
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m
𝐹 𝑡 = 𝐹0 sin(𝜔𝑡)

In experiment, the response of a mechanical resonator is related to its 

energy, we should consider the square of the displacement. Thus, 

𝑄 =
𝜔0

Γ
quality factor

𝑥 𝜔 2 =
𝐹0
2

4𝑚2𝜔0
2 𝛤

2

2

+ 𝜔0 − 𝜔 2

∝
1

𝛤
2

2

+ 𝜔0 −𝜔 2 This formula is the well known Lorentzian function!

G ≈ 2p   810 Hz

w0 ≈ 2p   8.369 MHz

G

Example) a resonance curve of a 

nanomechanical resonator

Mechanical Vibrations of a Single Body with Damping
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two degrees of freedom

Let’s consider a case where two masses exist. The 

Newton’s second law leads 

𝑚
𝑑2𝑥1
𝑑𝑡2

= 𝑘 𝑥2 − 𝑥1 − 𝑘𝑥1

k

𝑚
𝑑2𝑥2
𝑑𝑡2

= 𝑘 𝑥1 − 𝑥2 − 𝑘𝑥2

If we express the equations of motion in a matrix form, we get

𝑚
𝑑2

𝑑𝑡2
1 0
0 1

𝑥1
𝑥2

= 𝑘
−2 1
1 −2

𝑥1
𝑥2

To calculate the natural frequencies (eigenvalues) of this system, we let                               and insert this solution to 

the above equation, we obtain

𝑥1
𝑥2

=
𝑢1
𝑢2

𝑒−𝑖𝜔𝑡

𝑚
𝑑2

𝑑𝑡2
1 0
0 1

𝑥1
𝑥2

− 𝑘
−2 1
1 −2

𝑥1
𝑥2

= 0

−𝑚𝜔2 + 2𝑘 −𝑘
−𝑘 −𝑚𝜔2 + 2𝑘

𝑢1
𝑢2

= 0
−𝑚𝜔2 + 2𝑘 −𝑘

−𝑘 −𝑚𝜔2 + 2𝑘
= 0

Mechanical Vibrations of a Two-Body System 



𝑥2𝑥1
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two degrees of freedom

If we calculate the determinant, we obtain the 

following characteristic equation: 

k

𝑚𝜔2 − 2𝑘 2 − 𝑘2 = 0

The eigenfrequencies are then given by

𝜔± =
2𝑘 ± 𝑘

𝑚

If we insert this to the eigenvalue equation, we obtain the following eigenvalue-eigenvector pairs. 

𝜔− =
𝑘

𝑚

𝑢1
𝑢2

=
1

2

1
1, 𝜔+ =

3𝑘

𝑚

𝑢1
𝑢2

=
1

2

1
−1,

symmetric eigenmode for the 

smaller eigenfrequency
asymmetric eigenmode for the 

larger eigenfrequency

Mechanical Vibrations of a Two-Body System 



Coherent phonon manipulation in coupled mechanical resonators, Nature Physics 9, 480-484 (2013)

Research Example of Mechanical Vibrations of a Two-Body System 
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𝑢𝑖+1𝑢𝑖−1
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a

What about if we have an one-dimensional, infinite array of mass-spring systems? Here, note that we 

introduce a new parameter a which is the lattice periodicity (the size of a unit cell). Let’s write down the equation of 

motion for this system. In this case, since the periodic nature of this system, we only need to consider the 

dynamics of a mass in a unit cell. The equation reads

𝑚
𝑑2𝑢𝑖
𝑑𝑡2

= 𝑘 𝑢𝑖+1 − 𝑢𝑖 + 𝑘 𝑢𝑖−1 − 𝑢𝑖

𝑥

Mechanical Vibrations of a Many-Body System: Wave



What this equation implies for with the spatial information? 

Let’s do some approximation to the equation.

𝑚
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
= 𝑘[𝑢(𝑥 + 𝑎, 𝑡) − 𝑢 𝑥, 𝑡 ] + 𝑘[𝑢(𝑥 − 𝑎, 𝑡) − 𝑢 𝑥, 𝑡 ]

𝑢𝑖 = 𝑢(𝑥, 𝑡) 𝑢𝑖±1 = 𝑢(𝑥 ± 𝑎, 𝑡)

If we insert this to the equation of motion, we obtain.

If we describe 𝑢(𝑥 ± 𝑎, 𝑡) using the Taylor expansion up to the second order with respect to x, we get  

𝑢 𝑥 ± 𝑎, 𝑡 = 𝑢 𝑥, 𝑡 ± 𝑎
𝜕𝑢 𝑥, 𝑡

𝜕𝑥
+
𝑎2

2

𝜕2𝑢 𝑥, 𝑡

𝜕𝑥2

If we insert this expression to the equation, we indeed obtain the famous wave equation!!

𝑚
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
= 𝑘𝑎2

𝜕2𝑢 𝑥, 𝑡

𝜕𝑥2
𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
= 𝑐2

𝜕2𝑢 𝑥, 𝑡

𝜕𝑥2
𝑐2 =

𝑘

𝑚
𝑎2

wave velocity!

Mechanical Vibrations of a Many-Body System: Wave



So we now understand that this infinite array of masses can support propagating wave which can be described by 

the wave equation with linear dispersion relation.

However, we also know that we did some (continuum) approximation and the equation does not fully capture the 

behavior of this system with discrete nature. To see the discrete effects, let’s consider the equation of motion again. 

If we insert a plane-wave solution to the wave equation,

𝑢(𝑥, 𝑡) = 𝑢0𝑒
𝑗(𝑞𝑥−𝜔𝑡)

𝜔 = 𝑐𝑞

We obtain the following (dispersion) relation for the angular frequency 𝜔 and 

the wave vector q

𝑚
𝑑2𝑢𝑖
𝑑𝑡2

= 𝑘 𝑢𝑖+1 − 𝑢𝑖 + 𝑘 𝑢𝑖−1 − 𝑢𝑖

Here, we can use a form of the solution,                                          , which leads to                           . 

Inserting these to the equation of motion, we get                                          
𝑢𝑖 = 𝑢0𝑒

𝑗[𝑞(𝑖𝑎)−𝜔𝑡] 𝑢𝑖±1 = 𝑢𝑖𝑒
±𝑗𝑞𝑎

Bloch theorem!

Mechanical Vibrations of a Many-Body System: Wave



𝑚
𝑑2𝑢𝑖
𝑑𝑡2

= 𝑘 𝑢𝑖+1 − 𝑢𝑖 + 𝑘 𝑢𝑖−1 − 𝑢𝑖

In the end, we obtain the dispersion relation for this one-dimensional monatomic system as

−𝑚𝜔2 = 𝑘 𝑒𝑗𝑞𝑎 − 1 + 𝑘 𝑒−𝑗𝑞𝑎 − 1

𝑚𝜔2 + 𝑘 𝑒𝑗𝑞𝑎 + 𝑒−𝑗𝑞𝑎 − 2 = 𝑚𝜔2 + 𝑘 2 cos 𝑞𝑎 − 2 = 𝑚𝜔2 − 4𝑘 sin2
𝑞𝑎

2
= 0

𝜔2 =
4𝑘

𝑚
sin2

𝑞𝑎

2

𝜔2 ≈
4𝑘

𝑚

𝑞𝑎

2

2

=
𝑘

𝑚
𝑎2𝑞2 = 𝑐2𝑞2

Long wave approximation, 

when qa<<1

p/a

𝜔

-p/a q

forbidden frequency 

region

𝜔 = 2
𝑘

𝑚

Mechanical Vibrations of a Many-Body System: Wave
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What about if we have two masses in a unit cell of an one-dimensional, infinite array of mass-spring systems?  

𝑚
𝑑2𝑢𝑖
𝑑𝑡2

= 𝑘 𝑣𝑖 − 𝑢𝑖 + 𝑘 𝑣𝑖−1 − 𝑢𝑖

𝑥

𝑢𝑖+1𝑢𝑖−1

Let’s write down the equations of motion!

𝑀
𝑑2𝑣𝑖
𝑑𝑡2

= 𝑘 𝑢𝑖+1 − 𝑣𝑖 + 𝑘 𝑢𝑖 − 𝑣𝑖

Waves in a One-Dimensional Lattice with Two Bodies in a Unit Cell



Here, the solutions we will use are

−𝜔2𝑚𝑢0 = 𝑘 𝑣0 − 𝑢0 + 𝑘 𝑣0𝑒
−𝑗𝑞𝑎 − 𝑢0

If we insert these solutions to the equations of motion, we obtain 

−𝜔2𝑀𝑣0 = 𝑘 𝑢0𝑒
𝑗𝑞𝑎 − 𝑣0 + 𝑘 𝑢0 − 𝑣0

𝑢𝑖 = 𝑢0𝑒
𝑗[𝑞(𝑖𝑎)−𝜔𝑡] 𝑣𝑖 = 𝑣0𝑒

𝑗[𝑞(𝑖𝑎)−𝜔𝑡]

𝑢𝑖±1 = 𝑢𝑖𝑒
±𝑗𝑞𝑎 𝑣𝑖±1 = 𝑣𝑖𝑒

±𝑗𝑞𝑎

In a matrix form, we can express the equations as 

−𝜔2𝑚 0
0 −𝜔2𝑀

𝑢0
𝑣0

=
−2𝑘 𝑘 1 + 𝑒−𝑗𝑞𝑎

𝑘 1 + 𝑒𝑗𝑞𝑎 −2𝑘

𝑢0
𝑣0

We can easily notice that because the characteristic equation is a 2 x 2 matrix equation, we will have two 

dispersion curves. 

Waves in a One-Dimensional Lattice with Two Bodies in a Unit Cell



If we obtain eigenfrequencies and eigenvectors by solving 

the characteristic equation, 

If we insert these solutions to the equations of motion, we obtain 

𝜔2𝑚− 2𝑘 𝜔2𝑀 − 2𝑘 − 𝑘2 1 + 𝑒−𝑗𝑞𝑎 1 + 𝑒𝑗𝑞𝑎 = 0

𝜔2𝑚 − 2𝑘 𝑘 1 + 𝑒−𝑗𝑞𝑎

𝑘 1 + 𝑒𝑗𝑞𝑎 𝜔2𝑀 − 2𝑘

𝑢0
𝑣0

= 0

𝑚𝑀𝜔4 − 2𝑘 𝑚 +𝑀 𝜔2 + 2𝑘2(1 − cos 𝑞𝑎) = 0

𝜔4 − 2𝑘
1

𝑀
+
1

𝑚
𝜔2 +

4𝑘2

𝑚𝑀
sin2

𝑞𝑎

2
= 0

𝜔±
2 = 𝑘

1

𝑀
+
1

𝑚
± 𝑘

1

𝑀
+
1

𝑚

2

−
4

𝑚𝑀
sin2

𝑞𝑎

2

Waves in a One-Dimensional Lattice with Two Bodies in a Unit Cell



𝜔±
2 = 𝑘

1

𝑀
+
1

𝑚
± 𝑘

1

𝑀
+
1

𝑚

2

−
4

𝑚𝑀
sin2

𝑞𝑎

2

Eigenvectors for acoustic branch (symmetric)

Eigenvectors for optical branch (asymmetric)
p/a-p/a q

𝜔

acoustic branch

optical branch

phononic band gap

phononic band gap

Note on phononic band gap: 

• no eigenmode exists

• waves at the frequency within the 

band gaps cannot propagate inside 

the system, but reflected. 

Waves in a One-Dimensional Lattice with Two Bodies in a Unit Cell



VT = 0 V

VT = 20 V

Experimental Numerical

• VT : Tuning voltage

• VAC : AC excitation voltage

• VDC: DC voltage 

Isotropic HF etching of thermal SiO2

Number of unit cells: 120

Electrical tuning of elastic wave propagation in nanomechanical lattices at MHz 

frequencies, Nature Nanotechnology 13, 1016-1020 (2018)

Research Example of Waves in a One-Dimensional Lattice



Electrical tuning of elastic wave propagation in nanomechanical lattices at MHz 

frequencies, Nature Nanotechnology 13, 1016-1020 (2018)

Research Example of Waves in a One-Dimensional Lattice

VT = 0 V VT = 24 V



Waves in a Multi-Dimensional Lattice: Phononic Crystal

Nature 503 209–217 (2013)

In general, periodic mechanical systems can be arranged in two- and three-dimensions. Such mechanical systems 

have received great attention due to the possibility of controlling elastic and acoustic wave propagation in desired 

ways.

Phononic crystals and metamaterials designate such kinds of mechanical systems nowadays and provide a 

wide range of opportunities for engineering mechanical waves with many design parameters such as crystalline 

symmetries, unit cell architecture, the properties and compositions of constituent materials and so on. 



Waves in a Multi-Dimensional Lattice: Phononic Crystal

Frequency

Dimension

Nature 462, 78-82 (2009) Phys. Rev. App. 6, 064005 (2016)

Nat. Nanotech. 9, 520-524 (2014)
Science 289, 1734-1736 (2000)

Phys. Rev. Lett 112, 133901 (2014)

Scientific Reports 6, 27717 (2016)

JMPS 112, 577-593 (2018)



Waves in a Multi-Dimensional Lattice: Crystalline Symmetry

square lattice triangular lattice honeycomb lattice kagome lattice

𝑎1

𝑎2

𝑎1 = 𝑎ෝ𝒙

𝑎2 = 𝑎ෝ𝒚

𝑎1

𝑎2 𝑎2 𝑎1 𝑎1𝑎2

basis vectors:

𝑎1 = 𝑎ෝ𝒙

𝑎2 =
𝑎

2
ෝ𝒙 +

3

2
ෝ𝒚

basis vectors:

𝑎1 =
𝑎

2
ෝ𝒙 +

3

2
ෝ𝒚

𝑎2 = −
𝑎

2
ෝ𝒙 +

3

2
ෝ𝒚

basis vectors:

𝑎

𝑎1 =
𝑎

2
ෝ𝒙 +

3

2
ෝ𝒚

𝑎2 = −
𝑎

2
ෝ𝒙 +

3

2
ෝ𝒚

basis vectors:



Waves in a Multi-Dimensional Lattice: Reciprocal Space

• To study waves in a periodic structure, we analyze its dispersion relation (frequency-wavelength relation) in a 

reciprocal space or wavevector space. 

• When studying mechanical vibrations, we analyze the responses of mechanical systems in frequency domain 

which is the reciprocal space of time domain. 

• However, since a spatial domain can also be two- and three-dimensional unlike time domain (which is one-

dimensional), a reciprocal space has the same dimension with that of a space domain. 

• Lattices in real space have various crystalline symmetries, so we have to find proper reciprocal space to study 

the behavior of waves in the lattices. 

O A

B

𝑏1

𝑏2

square lattice

irreducible 

Brillouin 

zone

Brillouin 

zone

𝑏1

𝑏2

O

A
B

triangular lattice

𝑏1𝑏2

O

A
B

honeycomb, kagome lattice



Research Example 1 of Phononic Crystals

A phononic bandgap shield for high-Q membrane microresonators, Applied Ph

ysics Letters 104, 023510 (2014)

x
y

𝑢 𝑥 + 𝑎, 𝑦 = 𝑢 𝑥, 𝑦 𝑒𝑖𝑘𝑥𝑎
Bloch periodic 

conditions!𝑢 𝑥, 𝑦 + 𝑎 = 𝑢 𝑥, 𝑦 𝑒𝑖𝑘𝑦𝑎

𝑢 𝑥, 𝑦 : displacement field

band structure 

analysis

a =

b =

w =

t =   

1100 um

686 um

97 um

300 um

800 um

542 um

96 um

300 um

a =

b =

w =

t =   



A phononic bandgap shield for high-Q membrane microresonators, Applied Ph

ysics Letters 104, 023510 (2014)

Here, the authors utilized phononic band 

gaps (of the silicon frame) to realize 

high-Q nanomechanical vibrations !

We will see later how this is related to 

quantum technology

Research Example 1 of Phononic Crystals



Research Example 2 of Phononic Crystals

Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution

, Nature Nanotechnology 12, 776-783 (2017)

In this research, they realize a phononic crystal in a highly stressed silicon nitride nanomembrane 

(𝜎~ 1.27 GPa) and utilized the phononic band gap to achieve ultra high-Q mechanical resonator 

(Q~ 108)

Albert Schiliesser Group 
at the Niels Bohr Institute



Research Example 2 of Phononic Crystals

Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution

, Nature Nanotechnology 12, 776-783 (2017)



Simulation of Phononic Crystals using COMSOL

Step 1. Design the geometry and define your primitive unit cell of the lattice  and define the material pr

operties

Plate with a resonator Top view Side view

Step 2. Mesh generation: discretization of your system, constructing mass and stiffness matrices



Simulation of Phononic Crystals using COMSOL

Step 3. Apply the Bloch periodic conditions(select Floquet periodicity in COMSOL)

Bloch wave vectors



Simulation of Phononic Crystals using COMSOL

Step 3. Apply the Bloch periodic conditions(select Floquet periodicity in COMSOL)

Bloch wave vectors



Simulation of Phononic Crystals using COMSOL

Step 4. Solve the eigenvalue equations for different wave vectors(at the boundary of irreducible BZ)



Simulation of Phononic Crystals using COMSOL

Step 5. Plot your dispersion curves and analyze mode dynamics!
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Let’s Do Some Quantum from Now On



෡𝐻𝜓(𝑥) = 𝐸𝜓(𝑥)

A time-independent Schroedinger equation reads

෡𝐻: Hamiltonian operator

𝜓: wave function(eigenfunction)

𝐸: energy(eigenvalue)

Recall the Hamiltonian for the mechanical oscillator

෡𝐻 =
1

2
𝑚𝑣2 +

1

2
𝑘𝑥2 =

𝑝2

2𝑚
+
1

2
𝑚𝜔2𝑥2

𝑝 = 𝑚𝑣:

𝑘 = 𝑚𝜔2: 

momentum operator

𝜔: (angular)resonant frequency

𝑥: position operator

spring constant

න 𝜓(𝑥) 2 𝑑𝑥 = 1

𝜓(𝑥) 2: the probability of 

finding the particle at 

point x

𝑥

m

k

Quantum Mechanics of A Single-Mode Mechanical Resonator



෡𝐻𝜓(𝑥) = 𝐸𝜓(𝑥)

Ƹ𝑝2

2𝑚
+
1

2
𝑚𝜔2 ො𝑥2 𝜓(𝑥) = 𝐸𝜓(𝑥)

If we define new operators

ො𝑎† =
1

2ℏ𝑚𝜔
−𝑖 Ƹ𝑝 + 𝑚𝜔ො𝑥

ො𝑎 =
1

2ℏ𝑚𝜔
𝑖 Ƹ𝑝 + 𝑚𝜔ො𝑥

creation operator

annihilation operator

෡𝐻𝜓(𝑥) = ℏ𝜔 ො𝑎† ො𝑎 +
1

2
𝜓(𝑥) = 𝐸𝜓(𝑥)

(생성)

(소멸)

Phonon: 

Phonon is a quasiparticle(준입자) 

which represents a quantized 

energy unit of mechanical vibrations 

and waves. It is like photon for 

electromagnetic waves. 

Ex) we have many phonons in a 

mechanical resonator => the energy 

of a mechanical resonator is high.

𝑥

m

k

Quantum Mechanics of A Single-Mode Mechanical Resonator



෡𝐻𝜓(𝑥) = 𝐸𝜓(𝑥)

෡𝐻 = ℏ𝜔 ො𝑎† ො𝑎 +
1

2
𝐸 = ℏ𝜔 𝑛 +

1

2

Hamiltonian for a single-mode 

mechanical resonator 

ො𝑎†

ො𝑎

creation operator

annihilation operator

Energy of a single-mode 

mechanical resonator

𝑥𝑧𝑝𝑓 =
ℏ

2𝑚𝜔
zero-point fluctuation

Quantum Mechanics of A Single-Mode Mechanical Resonator



• Bose-Einstein Distributions: A distribution that shows the average number of particles that occupy a 

quantum state. Also called the occupancy of the quantum state. 

𝑛 =
1

𝑒
ℎ𝑓
𝑘𝐵𝑇 − 1

𝑓: resonant or mode frequency

ℎ : Planck’s constant

𝑘𝐵: Boltzmann constant

𝑇: Temperature

• The exponent
ℎ𝑓

𝑘𝐵𝑇
is the most important indicator that informs us of whether a system behaves

quantum mechanically or not. 

• If ℎ𝑓 ≪ 𝑘𝐵𝑇, Thermal energy(noise) excites the system. A system behaves classically. 

• If ℎ𝑓 ≫ 𝑘𝐵𝑇,

𝑛 ≫ 1

𝑛 ≪ 1 No boson exists in the system. The system is in the quantum ground 

state or is quantum vacuum. A system behaves quantum mechanically.  

Thermodynamic Aspects of A Single-Mode Mechanical Resonator



• Let’s look at the Bose-Einstein distribution for different temperatures and frequencies.  

T = 10 mK

T = 100 mK

T = 1000 mK

f = 10 MHz

f = 100 MHz

f = 1000 MHz

single 

phonon

• The occupancy decreases as the temperature decreases at the same resonant frequency. 

• The occupancy decreases as the frequency increases at the same temperature. 

Note: 

Superconducting 
quantum devices 
operate at mK
temperatures!

Thermodynamic Aspects of A Single-Mode Mechanical Resonator



Examples) Calculate the phonon occupancy of two different nanomechanical systems oscillating at different 

resonant frequencies at 20 mK.

J. S. Bunch et al. Science 315, 490-493 (2007)

Graphene nanomechanical resonator Silicon Phonon Cavity

J. Chan et al. Appl. Phys. Lett. 101, 081115 (2012)

𝑛 =
1

𝑒
ℎ𝑓
𝑘𝐵𝑇 − 1

=
1

𝑒
6.626×10−34𝐽∙𝑠 20 𝑀𝐻𝑧
1.38×10−23𝐽/𝐾 20𝑚𝐾 − 1

≈ 20

𝑓 ~ 20 𝑀𝐻𝑧 𝑓 ~ 3 𝐺𝐻𝑧

There are 20 phonons thermally created! 

=> The thermally excited mechanical resonator has 

its energy corresponding to 20 phonons!

𝑛 =
1

𝑒
ℎ𝑓
𝑘𝐵𝑇 − 1

=
1

𝑒
6.626×10−34𝐽∙𝑠 3 𝐺𝐻𝑧
1.38×10−23𝐽/𝐾 20𝑚𝐾 − 1

≈ 0.0007

There are almost no phonon in the system! 

=> The mechanical resonator are now in its quantum 

ground state!

Thermodynamic Aspects of A Single-Mode Mechanical Resonator



an optical cavity(Fabry-Perot type) 

made of  two highly reflective mirrors

Remark) Optical cavities are essential components 

for cavity quantum electrodynamics(cavity QED) 

and thus quantum information science!

We start from the well-known Maxwell’s equations. 

Note that there is no charge or current source that 

provides additional electric or magnetic fields. 

∇ ∙ 𝐸 = 0

∇ ∙ 𝐵 = 0

∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡

∇ × 𝐵 = 𝜇0𝜀0
𝜕𝐸

𝜕𝑡

L

𝐸: electric field

𝐵: magnetic field

𝜇0: vacuum permeability

𝜀0: vacuum permittivity

Quantum Mechaics of A Single-Mode Electromagnetic Resonator



From the four Maxwell’s equations, we derive the wave equation for electromagnetic waves in vacuum. 

This reads

∇2𝐸 =
1

𝑐2
𝜕2𝐸

𝜕𝑡2
with 𝑐 =

1

𝜇0𝜀0
: the speed of light

Assume that the electric field is linearly polarized in z-

direction as in the figure and the propagation direction 

is parallel to x-direction. 

The total energy of the electromagnetic field contained 

in the cavity is given by

𝑈 =
1

2
න
𝑉

(𝜀0𝐸𝑧
2 +

𝐵𝑦
2

𝜇0
) 𝑑𝑉

Quantum Mechaics of A Single-Mode Electromagnetic Resonator



If we let                                           , we obtain  𝐸𝑧 = 𝑞 𝑡 sin 𝑘𝑥 𝐵𝑦 = −
𝜇0𝜀0
𝑘

ሶ𝑞(𝑡) cos 𝑘𝑥

∇ × 𝐵 = 𝜇0𝜀0
𝜕𝐸

𝜕𝑡
Note that we use                                          . 

If we insert the electric field and the magnetic field into the energy equation, 

we obtian
𝑈 =

1

2
න
𝑉

(𝜀0𝐸𝑧
2 +

𝐵𝑦
2

𝜇0
) 𝑑𝑉

𝑈 =
𝜀0𝑉

2

ሶ𝑞2 𝑡

𝑐2𝑘2
+ 𝑞2 𝑡 =

𝑝2

2𝑚
+
1

2
𝑚𝜔2𝑞2

The form of the equation remind us of the energy of a single-mode 

mechanical resonator!

Here, we define a momentum                          with                          .𝑝 = 𝑚𝑞 𝑚 =
𝜀0𝑉

𝜔2

Quantum Mechaics of A Single-Mode Electromagnetic Resonator



Therefore, electromagnetic waves behaves like mechanical resonators in quantum mechanics and their 

quantization is called photons. So all the quantum mechanical definitions of the mechanical resonators 

are also valid for photons. 

෡𝐻 = ℏ𝜔 ො𝑎† ො𝑎 +
1

2

𝐸 = ℏ𝜔 𝑛 +
1

2

ො𝑎†

ො𝑎

creation operator

annihilation operator

𝑥𝑧𝑝𝑓 =
ℏ𝜔

2𝑉𝜀0

𝑛 =
1

𝑒
ℎ𝑓
𝑘𝐵𝑇 − 1

Thermal Occupancy zero-point fluctuation

Quantum Mechaics of A Single-Mode Electromagnetic Resonator



There are many types of optical cavities such as free-space optical cavities, whispering gallery mode optical 

resonators, and photonic crystal cavities. 

Wikipedia

A free-space optical 

cavity. This can be used 

to trap particles and 

neutral atoms.

Whispering gallery mode 

optical resonator. This can 

be used to generate optical 

frequency combs.

D. K. Armani et al. Nature 421, 925-928 (2003) J. Riedrich-Moller et al. Nat. Nanotechnol. 7, 

69-74 (2012)

Photonic crystal cavity 

resonator. This can be used 

to study cavity QED with NV 

centers and cavity 

optomechanics. 

Quantum Mechaics of A Single-Mode Electromagnetic Resonator



A. Wallraff et al. Nature 431, 162-167 (2004)

J Cha, et al. Nano Letters 21, 1800-1806 (2021)

coplanar waveguide 

microwave resonator

for qubit measurement. LC resonator for 

superconducting 

nanoelectromechanics

Obviously, microwave resonators follow all the definitions of quantum harmonic oscillators we discussed 

so far. There are many types of microwave resonators we can realize such as coplanar waveguide cavity, 

3D microwave cavity, and LC resonators. 

Quantum Mechaics of A Single-Mode Electromagnetic Resonator



Examples) Calculate the occupancy of two different electromagnetic resonators with different resonant 

frequencies at 300 K(room temperature). 

Superconducting Microwave Resonators Optical resonator

𝑛 =
1

𝑒
ℎ𝑓
𝑘𝐵𝑇 − 1

=
1

𝑒
6.626×10−34𝐽∙𝑠 7 𝐺𝐻𝑧
1.38×10−23𝐽/𝐾 300 𝐾 − 1

≈ 892

𝑓 ~ 7 𝐺𝐻𝑧 𝑓 ~ 193 𝐺𝐻𝑧

There are 892 photons thermally created at the room 

temperature! That’s why we have to operate 

superconducting quantum devices at mK temperatures!

𝑛 =
1

𝑒
ℎ𝑓
𝑘𝐵𝑇 − 1

=
1

𝑒
6.626×10−34𝐽∙𝑠 193 𝑇𝐻𝑧
1.38×10−23𝐽/𝐾 300 𝐾 − 1

≈ 4(10−14)

no photons in the system! The system is in its quantum 

ground state. That’s why photon-based quantum 

experiments can be realized at the room temperature!

A. Wallraff et al. Nature 431, 162-167 (2004) D. K. Armani et al. Nature 421, 925-928 (2003)

Thermodynamics of Electromagnetic Waves



Cavity Optomechanics: Bring Mechanical Vibrations to Quantum Regime

Examples: 2D Nanomechanical ResonatorsOptical and Mechanical Resonators

T. J. Kippenberg, Cavity Optomechanics: Back-Action at 

the Mesoscale, Science 321, 1172 - 1176 (2008)

Jaesung Lee et al. Science Advances eaao6653 (2018)

R. De Alba et al. Nature Nanotechnology 11, 741-746 (2016)

displacement of the 

mechanical resonator (dx)

intensity change of the 

reflected light (da)



Review of Modern Physics 86, 1391 - 1452 (2014)

(coupling)

▪ Cavity enhanced photons exert forces (via the 

radiation-pressure) to the mechanical resonator

▪ The consequent motion of the mechanical 

resonator perturbs the optical cavity

▪ Due to the cavity perturbation, the forces applied 

by the photons change. 

▪ Optomechanical interaction leads to uncertainties 

in interferometric measurement

▪ But we can also exploit this to control the 

behavior of mechanical resonators or the 

behavior of light. 

෡𝐻 = ℏ𝜔𝑐 ො𝑎
† ො𝑎 + ℏΩ𝑚 ෠𝑏

† ෠𝑏 − ℏ𝑔0 ො𝑎
† ො𝑎 ෠𝑏† + ෠𝑏

photon phonon interaction

Cavity Optomechanics: Bring Mechanical Vibrations to Quantum Regime



LIGO: Laser Interferometer Gravitational-Wave Observatory

Cavity Optomechanics: Bring Mechanical Vibrations to Quantum Regime



• Noise from the light source (e.g. shot 

noise)

• “Back-action noise” originating from 

mechanically perturbed mirror due to 

the radiation pressure of the light. 

• The precision of the measurement is 

limited by the intensity of the light an

d the back-action noise. 

• Optimal intensity of light compromisi

ng the two effects needed to be find. 

Cavity Optomechanics: Bring Mechanical Vibrations to Quantum Regime



Nature 460, 724 – 727 (2009) Nature 452, 72 – 75 (2008) Nature 472, 69 – 73 (2011)

Nature 482, 63 – 67 (2012) Science 349, 952 – 955 (2015)

Cavity Optomechanics: Bring Mechanical Vibrations to Quantum Regime



Introduction to Cavity Optomechanics (Some Mathematics)

L

ො𝑎, 𝜔𝑐 , 𝜅
annihilation operator 

for cavity photons

a resonant frequency 

of the optical cavity
cavity loss rate

𝑥

laser in

laser out ෠𝑏, Ω𝑚, Γ𝑚

annihilation operator for 

nanomechanical phonons

a resonant frequency of 

the mechanical resonator

mechanical 

damping rate 



Introduction to Cavity Optomechanics (Some Mathematics)

෡𝐻 = ℏ𝜔𝑐 𝑥 ො𝑎† ො𝑎 + ℏΩ𝑚 ෠𝑏
† ෠𝑏

Based on the formalism we discussed so far in the

theory section, we begin with a Hamiltonian

Here, we note that the resonant frequency of the

cavity depends on the displacement of the

mechanical resonator.

If we approximate using the Taylor’s expansion up to the first order, we will have𝜔𝑐 𝑥

𝜔𝑐 𝑥 = 𝜔𝑐 𝑥 = 0 +
𝑑𝜔𝑐
𝑑𝑥

𝑥

A resonant frequency of the optical 

cavity when there is no mechanical 

displacement

This term describes the change of the 

optical cavity frequency when there is a 

mechanical displacement



Introduction to Cavity Optomechanics (Some Mathematics)

෡𝐻 = ℏ𝜔𝑐 𝑥 = 0 ො𝑎† ො𝑎 + ℏΩ𝑚 ෠𝑏
† ෠𝑏 + ℏ

𝑑𝜔𝑐
𝑑𝑥

𝑥 ො𝑎† ො𝑎

If we insert the approximation to the Hamiltonian equation, we get

If we describe the displacement in terms of the creation (෠𝑏†) and annihilation operators (෠𝑏) of phonon, we can

express x as in the following:

𝑥 = 𝑥𝑧𝑝𝑓(෠𝑏
† + ෠𝑏) 𝑥𝑧𝑝𝑓 =

ℏ

2𝑚𝜔
with

If we use this formula, the Hamiltonian then becomes

෡𝐻 = ℏ𝜔𝑐 𝑥 = 0 ො𝑎† ො𝑎 + ℏΩ𝑚 ෠𝑏
† ෠𝑏 + ℏ

𝑑𝜔𝑐
𝑑𝑥

𝑥𝑧𝑝𝑓(෠𝑏
† + ෠𝑏)ො𝑎† ො𝑎

vacuum

optomechanical

coupling rate



Example) Calculate the single-photon optomechanical coupling of an optical cavity-mechanical resonator 

system shown below. Parameters are given in the following. 

Parameters: 

Ω𝑚 = 2𝜋 × 947 𝑘𝐻𝑧

𝑚 = 145 𝑛𝑔

𝐿 = 25 𝑚𝑚

Nature 460, 724 – 727 (2009)

Solution) 

𝑔0 = −
𝜕𝜔𝑐
𝜕𝑥

𝑥𝑧𝑝𝑓 =
𝜔𝑐,𝑥=0

𝐿

ℏ

2𝑚Ω𝑚
= 2𝜋 × 2.79 𝐻𝑧

For Fabry-Perot cavity, 

𝜔𝑐 𝑥 =
𝐿

𝐿 + 𝑥
𝜔𝑐,𝑥=0 = 1 +

𝑥

𝐿

−1

𝜔𝑐,𝑥=0 ≈ (1 −
𝑥

𝐿
)𝜔𝑐,𝑥=0

Taylor’s expansion

𝜔𝑐 = 2𝜋 × 282 𝑇𝐻𝑧 (~1064 𝑛𝑚)

Introduction to Cavity Optomechanics (Some Mathematics)



Introduction to Cavity Optomechanics (Some Mathematics)

෡𝐻 = ℏ𝜔𝑐 𝑥 = 0 ො𝑎† ො𝑎 + ℏΩ𝑚 ෠𝑏
† ෠𝑏 − ℏ𝑔0 ෠𝑏† + ෠𝑏 ො𝑎† ො𝑎 + ෡𝐻𝑑𝑟𝑖𝑣𝑒

If we let , and write the Hamiltonian considering an external drive field (note that the

optomechanical interaction can only be realized when there is an external drive), we reach

𝑔0 = −
𝑑𝜔𝑐
𝑑𝑥

𝑥𝑧𝑝𝑓

෡𝐻𝑑𝑟𝑖𝑣𝑒 = 𝑖ℏ𝛼𝑖𝑛 𝜅𝑒𝑥𝑡( ො𝑎
†𝑒−𝑖𝜔𝑑𝑡 + ො𝑎𝑒𝑖𝜔𝑑𝑡)with

Laser intensity

optomechanical interaction

coupling rate to cavity laser drive frequency

To remove the time-dependent term, we consider the Hamiltonian in a new frame rotating at the drive laser 

frequency         , by applying the unitary transformation with                                  . The new Hamiltonian is given by  𝜔𝑑 ෡𝑈 = 𝑒𝑖𝜔𝑑 ො𝑎
† ො𝑎𝑡

෡𝐻𝑛𝑒𝑤 = ෡𝑈෡𝐻෡𝑈† − 𝑖ℏ෡𝑈𝜕෡𝑈†/𝜕𝑡



Introduction to Cavity Optomechanics (Some Mathematics)

By taking one more approximation called linear approximation ො𝑎 = 𝑛𝑐 + ො𝑎,

we obtain the optomechanical Hamiltonian as in the following:

෡𝐻 = −ℏΔො𝑎† ො𝑎 + ℏΩ𝑚 ෠𝑏
† ෠𝑏 − ℏ𝑔0 𝑛𝑐 ො𝑎† + ො𝑎 ෠𝑏† + ෠𝑏

• We neglect the driving terms and other small terms for the simplicity

• Here the most important term is detuning                                 ,  which denotes the difference between the 

driving frequency and the cavity frequency. 

Δ = 𝜔𝑑 − 𝜔𝑐

A
m

p
lit

u
d

e
 

Frequency 

𝜅

𝜔𝑐𝜔𝑑

Δ
• Depending on the detuning, optomechanical systems exhibit 

different behaviors and we will see in the following.

• Here,                               is general optomechanical coupling rate. 

This means that the coupling depends on the strength of the drive 

field.  

𝑔 = 𝑔0 𝑛𝑐



Introduction to Cavity Optomechanics

Let’s consider a Fabry-Perot cavity in the following figure. If the cavity is modulated by the mechanical motion, the 

optical responses we measure using the detector shows the laser intensity oscillation at the frequency of the 

mechanical resonator          . If we consider this modulation process in the optical spectrum domain, we can see 

sidebands generated at                           and                         .   

Ω𝑚
𝜔𝑑 + Ω𝑚 𝜔𝑑 − Ω𝑚

T. J. Kippenberg, Cavity Optomechanics: Back-Action at the Mesoscale, Science 321, 1172 - 1176 (2008)

In cavity optomechanics, we manipulate this sideband generation process to achieve desired responses of systems.  

phonon absorption

phonon emission



Introduction to Cavity Optomechanics (Optomechanical Cooling)

One of the representative phenomena we can realize using the optomechanical interaction is optomechanical 

cooling.

When                                                       and                       , optomechanical interaction creates a frequency sideband 

only around the cavity frequency. This single sideband generation is related to phonon-absorption process. This 

means that we reduce(or cool down) the energy of the mechanical resonator using optomechanical interaction.       

Δ = 𝜔𝑑 − 𝜔𝑐 = −Ω𝑚

A
m

p
lit

u
d

e
 Δ = −Ω𝑚

𝜅

𝜔𝑐

Ω𝑚 ≫ 𝜅

cavity resonance 

spectrum

mechanical sideband

𝜔𝑑

drive laser 

signal

The Hamiltonian then becomes

෡𝐻 = −ℏΔො𝑎† ො𝑎 + ℏΩ𝑚 ෠𝑏
† ෠𝑏 − ℏ𝑔0 𝑛𝑐 ො𝑎† ෠𝑏 + ො𝑎෠𝑏†

create cavity photon

remove phonon 

This regime is called red-detuned regime as the driving 

laser frequency is smaller and this operation leads to cooling 

of ‘hot’ thermal phonons to ‘cold’ cavity photons. 



Introduction to Cavity Optomechanics (Optomechanical Amplification)

Another representative phenomena is optomechanical amplification.

When                                                       and                       , optomechanical interaction creates a frequency sideband 

only around the cavity frequency. This single sideband generation is related to phonon-creation process. This 

means that we increase(or amplify) the energy of the mechanical resonator using optomechanical interaction.       

Δ = 𝜔𝑑 − 𝜔𝑐 = Ω𝑚

A
m

p
lit

u
d

e
 

Δ = Ω𝑚

𝜅

𝜔𝑐

Ω𝑚 ≫ 𝜅

cavity resonance 

spectrum

mechanical 

sideband

𝜔𝑑

drive laser 

signal

The Hamiltonian then becomes

෡𝐻 = −ℏΔො𝑎† ො𝑎 + ℏΩ𝑚 ෠𝑏
† ෠𝑏 − ℏ𝑔0 𝑛𝑐 ො𝑎† ෠𝑏† + ො𝑎෠𝑏

create cavity photon

create phonon 

This regime is called blue-detuned regime as the driving 

laser frequency is larger and this operation leads to 

amplification of phonons. 



Research Example of Cavity Optomechanics

phononic band gap shield

engineering 

phononic band gap 

for high-Q resonator 

radiation loss to the 

bulk is suppressed!

Laser cooling of a nanomechanical oscillator into its quantum ground state. 

Nature 478, 89 – 92 (2011)

Opt. Express 19, 5658-5669 (2011)



Hybrid Quantum Systems with Superconducting Microwave Circuits

Superconducting Microwave Circuit 

(microwave photon)
Phys. Rev. Lett. 111,

080502 (2013)

superconducting qubit 

(photon)

M

nanomechanical vibration 

(phonon)

spin ensembles 

(spin)

Phys. Rev. Lett. 105

,140502 (2010)

Nano Letters 22, 

5459-5465 (2022)

gigahertz elastic waves 

(phonon)

spin waves 

(magnon)

Phys. Rev. Lett. 122,

206802 (2019)

quantum dots 

(charge)



Review of Modern Physics 86, 1391 - 1452 (2014)

• Superconducting nanoelectromechanical systems can 

realize cavity optomechanical interaction via 

microwave fields at GHz frequencies.   

• The reason why we are using superconducting 

materials for such devices is that microwave loss 

properties can extremely be enhanced as a 

superconducting material has zero electrical resistivity 

below its superconducting temperature. 

• Furthermore, as we discussed, mK environments 

enable the quantum ground state of GHz microwave 

resonators.  

• The system can easily be modelled using LC circuit 

where the capacitance depends on the mechanical 

displacement. Their coupling is realized by 

electromechanical interaction where the voltage 

applied to the capacitor leads to mechanical 

displacement via electrostatic interactions. 

Cavity Optomechanics with Superconducting Microwave Circuits
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Cavity Optomechanics with Superconducting Microwave Circuits

• The Hamiltonian describing this system is given by

෡𝐻 =
1

2
𝐿𝐼2 +

1

2
𝐶(𝑥)𝑉2 +

𝑝2

2𝑚
+
1

2
𝑚Ω𝑚

2 𝑥2

microwave resonator mechanical resonator

• The Hamiltonian describes two-coupled harmonic 

oscillators. If we express the Hamiltonian quantum 

mechanically, we get

single photon optomechanical 

coupling constant
𝑔0 = −

𝜕𝜔𝑐
𝜕𝑥

𝑥𝑧𝑝𝑓

𝐶 𝑥 =
𝜀0𝐴

(𝑑 + 𝑥)
for parallel capacitor

෡𝐻 = ℏ𝜔𝑐 ො𝑎
† ො𝑎 + ℏΩ𝑚 ෠𝑏

† ෠𝑏 − ℏ𝑔0 ො𝑎
† ො𝑎 ෠𝑏† + ෠𝑏

photon phonon interaction



Example) Calculate the single-photon optomechanical coupling of a superconducting nanoelectromechanical 

device shown in the below. Parameters are given in the following. 

Parameters: 

Ω𝑚 = 2𝜋 × 10.69 𝑀𝐻𝑧

𝑡 = 100 𝑛𝑚 ;

𝑑𝑐𝑎𝑝 = 50 𝑛𝑚

Solution) 

𝑔0 = −
𝜕𝜔𝑐
𝜕𝑥

𝑥𝑧𝑝𝑓 = −
𝐿𝐶𝑥=0

−0.5

2𝑑

ℏ

2𝑚Ω𝑚
≈ 2𝜋 × 300 𝐻𝑧

For LC circuit, the resonant frequency is  

𝜔𝑐 𝑥 =
1

𝐿𝐶(𝑥)
=

𝑑 + 𝑥

𝐿𝐴𝜀0
=

𝑑 1 +
𝑥
𝑑

𝐿𝐴𝜀0
≈

1

𝐿𝐶𝑥=0
1 +

𝑥

2𝑑

𝐿 = 12 𝑛𝐻;

𝐷 = 15 𝜇𝑚

𝜌𝐴𝑙 = 2700
𝑘𝑔

𝑚3
;

𝐶𝑥=0 = 38 𝑓𝐹

J.D. Teufel, et al. Nature 471, 204-208(2011)

Cavity Optomechanics with Superconducting Microwave Circuits
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Gm

Gm ≈ 2p   810 Hz

Wm ≈ 2p   8.369 MHz

k ≈ 2p   960 kHz

wc ≈ 2p   3.777 GHz

k

J Cha, et al. Nano Letters 21, 1800-1806 (2021)



Cavity Optomechanics with Superconducting Microwave Circuits

Optomechanical Cooling

J Cha, et al. Nano Letters 21, 1800-1806 (2021)

• Broadening of mechanical noise spectrum.                                                   

=> optomechanical damping effect. 

• Decrease of the area of the Lorentzian curve                                

=> Reduction of the energy of the nanomechanical resonator. 

=> Reduction of the phonon number

𝐴 = ∞−׬
∞
𝑆𝑥 𝜔

𝑑𝜔

2𝜋
= 𝑥2 =

𝑘𝐵𝑇

𝑚𝛺𝑚
2 =

2𝑘𝐵𝑇𝑥𝑧𝑝𝑓
2

ℏΩm
=2𝑛𝑝ℎ𝑥𝑧𝑝𝑓

2

𝑛𝑝ℎ = exp
ℏ𝛺𝑚
𝑘𝐵𝑇

− 1

−1

≈
𝑘𝐵𝑇

ℏ𝛺𝑚
for

𝑘𝐵𝑇

ℏ𝛺𝑚
≫ 1

• The Hamiltonian is 

෡𝐻 = −ℏΔො𝑎† ො𝑎 + ℏΩ𝑚 ෠𝑏
† ෠𝑏 − ℏ𝑔0 𝑛𝑑 ො𝑎† ෠𝑏 + ො𝑎 ෠𝑏†



Cavity Optomechanics with Superconducting Microwave Circuits

Ground-State Cooling: Quantum Mechanics with Macroscopic Objects 

J.D. Teufel, et al. Nature 471, 204-208(2011)

J.D. Teufel, et al. Nature 471, 359-363 (2011)

• Ground-state preparation for quantum applications

• Quantum-limited position and force detection 



Cavity Optomechanics with Superconducting Microwave Circuits

Ground-State Cooling with Phononic Crystals

Ground state cooling of an ultracoherent electromechanical system. Nat

ure Communications 13, 1507 (2022)

Albert Schiliesser Group 
at the Niels Bohr Institute
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Optomechanical Amplification

J Cha, et al. Nano Letters 21, 1800-1806 (2021)

• Narrowing of mechanical noise spectrum.                                                   

=> optomechanical anti-damping effect. 

• Increase of the area of the Lorentzian curve                                

=> Increase of the energy of the nanomechanical resonator.  

=> Increase of the phonon number

𝐴 = ∞−׬
∞
𝑆𝑥 𝜔

𝑑𝜔

2𝜋
= 𝑥2 =

𝑘𝐵𝑇

𝑚𝛺𝑚
2 =

2𝑘𝐵𝑇𝑥𝑧𝑝𝑓
2

ℏΩm
=2𝑛𝑝ℎ𝑥𝑧𝑝𝑓

2

𝑛𝑝ℎ = exp
ℏ𝛺𝑚
𝑘𝐵𝑇

− 1

−1

≈
𝑘𝐵𝑇

ℏ𝛺𝑚
for

𝑘𝐵𝑇

ℏ𝛺𝑚
≫ 1

• The Hamiltonian is 

෡𝐻 = −ℏΔො𝑎† ො𝑎 + ℏΩ𝑚 ෠𝑏
† ෠𝑏 − ℏ𝑔0 𝑛𝑑 ො𝑎† ෠𝑏† + ො𝑎 ෠𝑏



Cavity Optomechanics with Superconducting Microwave Circuits

Phonon numbers and Effective Temperature

J Cha, et al. Nano Letters 21, 1800-1806 (2021)

nph ≈ 188     (≈ 76 mK)

nph ≈ 10,400 (≈ 4.2 K)

nph ≈ 38,000 (≈ 15 K)

Blue: cooling

Red: amplification



Cavity Optomechanics with Superconducting Microwave Circuits

Optomechanical Control of Microwave Transmission: Optomechanically Induced Transparency

J Cha, et al. Nano Letters 21, 1800-1806 (2021)

ΓEMIR = Γm 1 +
4𝑔0

2𝑛𝑑
𝜅𝛤𝑚

= Γm 1 + 𝐶

Electromechanical Cooperativity C ≈ 40

Window linewidth

Single photon electromechanical coupling g0 ≈ 3.3 Hz

mechanical 

sideband spectrum

If we send a weak probe beam at wp, this probe 

beam and the mechanical sideband spectrum 

interfere and change the microwave transmission 



High Frequency Acoustic Resonators Coupled to Superconducting Qubits 

surface acoustic wave resonators 
fabricated at KRISS

4.885 GHz

𝑓𝑟 =
𝑐

𝜆
=

𝑐

2𝑝𝑝

𝜆
𝑐~4000 m/s for LiNbO3

𝑝~ 400 nm => ~5 GHz 

Direct 

coupling to 

microwave 

quantum 

states !



High Frequency Acoustic Resonators Coupled to Superconducting Qubits 

The Jaynes-Cummings Hamiltonian can also be 

used to describe qubit-phonon interactions

𝐻𝐽𝐶 = ℏΩ𝑚 ො𝑎† ො𝑎 +
ℏ𝜔𝑞

2
𝜎𝑧 + ℏ𝑔 ො𝑎†𝜎− + ො𝑎𝜎+

• Hamiltonian for the 

microwave resonator

• Hamiltonian for the SC 

qubit when approximated 

as a two-level system

• qubit-phonon 

interaction 

Hamiltonian
• 𝜔𝑟 denotes a photon 

frequency

• 𝜔𝑞 denotes the qubit 

frequency

• 𝑔 denotes the 

qubit-photon 

coupling

Quantum control of surface acoustic wave phonons, Nature 563, 661-665 (2018)



High Frequency Acoustic Resonators Coupled to Superconducting Qubits 

Quantum control of surface acoustic wave phonons, Nature 563, 661-665 (2018)

• Surface acoustic wave phonon can be coupled to 

superconducting qubits via piezoelectricity

• In this device, the coupling between phonon and 

qubit is tunable via a coupler 



High Frequency Acoustic Resonators Coupled to Superconducting Qubits 

Quantum acoustics with superconducting qubits, Science 358, 199-202 (2017) Resolving the energy levels of a nanomechanical oscillator, Nature 571, 537-540 (2019)



Quantum Transducer: Conversion of Microwave to Optical Signals

−ℏ𝑔𝑜𝑚 ෠𝑏
† ෠𝑏 Ƹ𝑐† + Ƹ𝑐

SC qubit෡𝐻

Optical photon

Nanomechanical phonon

qubit-phonon coupling

Optomechanical coupling

=
ℏ𝜔𝑞

2
𝜎𝑧

+ ℏ𝜔𝑜 ෠𝑏
† ෠𝑏

+ℏΩ𝑚 Ƹ𝑐† Ƹ𝑐

−ℏ𝑔𝑒𝑚 Ƹ𝑐†𝜎− + Ƹ𝑐𝜎+

Superconducting qubit to optical photon transduction. Nature 588, 599-603 (2020)

Oskar Painter group at Caltech has recently shown that a superconducting qubit can be measured using 

optical photons



Quantum Transducer: Conversion of Microwave to Optical Signals

Superconducting qubit to optical photon transduction. Nature 588, 599-603 (2020)

phonon 

sidebands from 

optomechanical 

Interaction

qubit-phonon 

coupling 

(dispersive) qubit 

readout with 

superconducting  

microwave 

resonators

qubit-phonon 

swap 

𝜔𝑚

2𝜋
= 5.1588, 5.2146, 5.2242, 5.2631 GHz

4.5 MHz

𝑔𝑜𝑚

2𝜋
= 420, 500, 527, 692 GHz

Vacuum Rabi 

oscillation between 

qubit and phonon

10 MHz



Quantum Transducer: Conversion of Microwave to Optical Signals

Superconducting qubit to optical photon transduction. 

Nature 588, 599-603 (2020)

The pulse sequence for quantum transduction

• qubit state preparation (ex, |0> -> |1>)

• qubit-phonon swap (qubit relaxed, phonon excited)

• red-detuned optical pump to the optomechanical 

cavity

• sideband photon signals are measured using 

SNSPD.

p-pulse probability: 1.38 ± 0.14 × 10−5

no p-pulse probability: 0.5 ± 0.09 × 10−5


