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Overview

 What is Mesoscopic Quantum Transport (MQT)

—> What are we exploring?

* What really happens at coherent & metallic conductions
—> From perfect conductor to single impurity to Ohmic regime
- MQT with multi-terminal transport

— Finite voltage bias and temperature

Mesoscopic Quantum | _ . -
Transport in 2 hours!

e Let us see MQT in action {

— Examples & Applications from research papers

* Theoretical machinery: how to obtain S-matrix

* Beyond coherent & metallic conductions

— A lot more exciting things left for you!




What is Mesoscopic Quantum Transport

* Mesoscopic qguantum transport?

Transport!
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What is Mesoscopic Quantum Transport

* Mesoscopic qguantum transport?

* Why ‘transport?’

— Transport reveals information

of transported objects
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What is Mesoscopic Quantum Transport

* Mesoscopic qguantum transport?

* Why ‘transport?’ Interaction b/t

- Transport reveals information ball &wind

of transported objects

Spin
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What is Mesoscopic Quantum Transport

* Mesoscopic guantum transport?

* Why ‘transport’: Transport reveals information of transported objects

* Which one is ‘guantum’: ptls are superposed, interfered, or entangled

Quantum
fluctuations!

Quantum particles:

| Q electrons, phonons, Cooper pairs,
N and other elementary excitations,
& which can be quantum mechanically
I\ superposed, interfered, or entangled!

Figures from depositphotos.com




What is Mesoscopic Quantum Transport

* Mesoscopic quantum transport?

* Why ‘transport’: Transport reveals information of transported objects

* Which one is ‘guantum’: ptls are superposed, interfered, or entangled

 What’s meso-scopic systems

Competition
b/t various
scales matter!

— Playground for quantum baseballs (not too large: macro-scopic)
but well-controllable & designable (not too small: micro-scopic)

We can place quantum
pitchers, catchers, fans
on the field, as we want!




Physics of MQT: Ohm’s law & Drude mode

* Most well-known transport theory: Ohm’s law & Drude model
— Ohm’s Law: electric field accelerates charges generating current
V=Rlorl =GV Drude model

— Impurities prevent charges from being accelerated indefinitely

gA 4 |V Conductivity 0 < 4
R N

»
»

oA
]A=TV@ J =oE

L e v |

V= (u —uy)/e




Physics of MQT: Ohm’s law & Drude mode

* Most well-known transport theory: Ohm’s law & Drude model

— Ohm’s Law: electric field accelerates charges generating current

V=Rlorl =GV @ﬂe model

— Impurities prevent charges from being accelerated indefinitely

oA 4 V¥V Conductivity 0 < 4
: N

oA
JA=—V & J=0oF

;;1 I

A

L o > |

/ What if a conductor is so small
that it contains no impurity?

V= (u —uy)/e

Do we have g — o0?
If not, what do we have?
< 4




Physics of MQT: perfect conductor

* Perfect conductor What is the conductance G
of a perfect conductor?

Contact 1 Contact 2

BK Kim and Sang-Jun Choi (equal contribution), et al.,
Nanoscale 10, 23175 (2018).




Physics of MQT: perfect conductor

e Perfect conductor ‘Mean free path\ %erelaxation Iength]

we assume: size of conductor, L << L, L.

Contact 1 Contact 2

|
'l
V=_(u —uzle




Physics of MQT: perfect conductor

* Perfect conductor mave'e"gth )

we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

px = hk

»’

Contact 2

Contact 1 |
[ |

'l
V=_(u —uzle

E(k)1

»
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E=224+24y
a2 2
nem<h
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Physics of MQT: perfect conductor

* Perfect conductor mave'e"gth )

we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

p, = hk
) . —
Contact 1 Contact 2
=:
V=0 —udle
E(k)‘.
E=2i2 4y
S L
_ Dx nem*h
- 2m+ 2mw2 +U




Physics of MQT: perfect conductor

* Perfect conductor mave'e"gth )

we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

p, = hk
) .
Contact 1 | Contact 2
'l
V=0 —udle
E(k)s
E = p—%+ﬁ+ U \_/
27;1 272’)1 2h2
_ Px n=r
T 2m T 2mw2 +U




Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

Contact 1 Contact 2

V=_(u —uzle

E(k)4

\+//

> k PRL 62, 300 (1989)
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Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

Contact 1 Contact 2
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Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

Contact 1 Contact 2

> k PRL 62, 300 (1989)
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Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

Contact 1 | Contact 2
a
V=0 —udle
E(k)»
(Nhat is the conductance G\
of a perfect conductor? H
) jp—— —
To answer, just calculate | Current carrying states
for given V = (u, — uq)/e
& o B




Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

* Calculating the current  Spin degeneracy |

1 1dE(k) 2L/ dE

+ _ + _ = + = — € j + el
h=envi=e (sz:f (E")> h dk AL (Zn / (E")dk> dk

2
== [Fr@ar
E(k)4
H1

Uz T :
Current I™ carrying states ]
Ak = Znif k




Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

* Calculating the current  Spin degeneracy |

12 1dE(k) 2L/ dE
e

2e 2e
— 7ff*(E)alE = Tff’f(E)M(E)dE M(E) = 2 O(E — Ep)
E(k) 4 "

»

251

Uz T :
Current I™ carrying states ]
Ak = Znif k




Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

* Calculating the current  Spin degeneracy |

12 1dE(k) 2L/ dE
e

= 2—hefj““(E)dE :%ffJf(E)M(E)dE => [t =2—heMu1 (zero temp.)
E(k) 4

»

251

Uz T :
Current I™ carrying states ]
Ak = Znif k




Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

* Calculating the current  Spin degeneracy |
1 1dE (k) e (2L dE
+ + _ + _ — +(E _
h=em e(sz:f (Ek)>h dk  hL (Zn jf ( ")dk> dk

2e 2e 2e
= WffJ“(E)dE = TffJf(E)M(E)dE > It = TMM (zero temp.)
I, independent Ei)y
from group velocity? Uq
0 H2
AE M V.S. C§§> m carrying states ]
vslow but fast but

many states few states e = o ‘f k



Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

e Calculating the current Opposite sign due to
opposite group velocity
2 2e

e
(zero temp.) It = 7M'ul & [~ = _TMHZ

E(k)1

»

251

Uz _
Current It carrying states ]
[ Current I~ carrying states

> k
Ak = ZniL




Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

e Calculating the current

G of a perfect conductoj

2e 2¢e = integer multiple of
(zero temp.) I = TMlil & I = —TM;LZ conductance quantum
__2e 2%y —pp  2e’
I=1t"+1"=—M(u, — ) = M = MV

h h e h

Contact 1 Contact 2

i
a
V= (u —u)/(—e)




Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

* Conductance of a perfect conductor

2
(zero temp.) G = ZiM
h

Quantum
confinement

.........................................

Conductance of a perfect conductor
is quantized by G = MG,

Conductance (e¥/x h)

2 2
(Conductance quantum G, = %,

independent of geometry)

2 -1.8 -1.6 -14 -1.2 -1

PRL 60, 848 (1988) (e volizee (0



Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

 Quantized conductance

2
G=%M
h

Quantum
confinement

quantum, R, = %kﬂ?

[ What is the source of resistance }

Conductance of a perfect conductor
is quantized by G = MG,

Conductance (e¥/x h)

2 2
(Conductance quantum G, = %,

independent of geometry)

2 -1.8 -1.6 -14 -1.2 -1

PRL 60, 848 (1988) (e volizee (0



Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

 Quantized conductance

* Where is the voltage drop?

Ans. at the contacts

= A

Contact 1 Contact 2

voltage drop also with
electrochemical potenti

We can define the
al

No matter how we define
the voltage drop, it
occurs at the contacts

L

27



Physics of MQT: perfect conductor

* Perfect conductor
we assume: size of conductor, L << L_, L, But Ar < W w/ subbands

Reflectionless contacts (no backscattering at contact)

 Quantized conductance
Contact resistance

2e?
G—hM—>R_ h 129
€ 2e2M M

* Where is the voltage drop? ¢ . .. issipation

Ans. at the contacts should occur to fit

into B.C. at infinity
? No matter\h\ow we define

H1*
., R the voltage drop, it

Contact 2 occurs at the contacts

Hot

i) Translational symmetry
is broken at contacts
No voltage drop ii) Contacts are irremovable

No
resistance

Contact 1

28




Physics of MQT: perfect conductor

H1 = Uz Hi > Mo

[~

 Quantized conductance

, Contact resistance
2
G € M > h _ 12.9

T 2e2M M

* Where is the voltage drop? ¢ . .. issipation

Ans. at the contacts should occur to fit

into B.C. at infinity
? No matter?ow we define

H1i
., R the voltage drop, it

Contact 2 occurs at the contacts

Hot

i) Translational symmetry
is broken at contacts
e

ii) Contacts are irremovabl

No voltage drop

No
resistance

Contact 1

29




Physics of MQT: Not perfect but ballistic conductor

» Ballistic conductor w/ a single impurity: size of conductor, L <L

Contact 1 . . Contact 2

* Scattering Matrix
[¢m) g = lim )

|pim)
> (62 1) = lim )

| )<

General solution H[y) = E[): |¢;) = A|op}) + BloP) & |¢y) = Clb2) + D|pl).
Undergraduate courses, we deal with two cases: (i) left & (ii) right incidence. We know

(()B=rA&C =tA&D = 0: |p)) = A|p)) +TAld7) & |y = tAlD))

() B=t'D&C=7'D&A=0: +]lg) = t'D|¢?) & |¢y) =r'D|p) + D|pi).
General solution is

|91) = Algp]) + (PA + £'D)|¢P) & |y = (A + r'D) L) + D|epl).




Physics of MQT: Not perfect but ballistic conductor

» Ballistic conductor w/ a single impurity: size of conductor, L <L

Contact 1 Contact 2

* Scattering Matrix

|P1") >
[

|pin) |6/°) = lim |ypie)

X——00

> |62 |¢r°) = lim [pt)

General solution: |¢;) = A|p}) + (rA + t'D)|¢7) & |p,) = (LA +7'D)|d2) + D|pl).

(=G G =s()

If interested only in amplitudes of scattering states at infinity, only thing we need to know is

s=(; 1)




Physics of MQT: Not perfect but ballistic conductor

» Ballistic conductor w/ a single impurity: size of conductor, L <L

Contact 1 . ! /2 . Contact 2
lE

2e
j'_)lil- =7M.U1T
-

Val s




Physics of MQT: Not perfect but ballistic conductor

» Ballistic conductor w/ a single impurity: size of conductor, L <L

Contact 1 Contact 2

TR symmetry
is implied
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» Ballistic conductor w/ a single impurity: size of conductor, L <L

Contact 1 Contact 2

TR symmetry
is implied




Physics of MQT: Not perfect but ballistic conductor

» Ballistic conductor w/ a single impurity: size of conductor, L <L

Contact 1 Contact 2
TR symmetry
is implied
Mu,T

I = 26A4 R
1= H1 MR

Zenq

n M2

Total current at lead 1:

2e 2e 2e 2e

- Muy — =My (1= T) == Mup T = - M(py — pp)T

L=I+1] =
1 1+1 h h




Physics of MQT: Not perfect but ballistic conductor

» Ballistic conductor w/ a single impurity: size of conductor, L <L

Contact 1 Contact 2
TR symmetry
is implied
Mu,T
Iy = —EM R
1= H1 MR
ZeM -
n Uz
Total current at lead 1:
L o, Ze Ze 2e 2e
L =17 +1I7 = TMM —TMH1(1 —T) _TM.UZT = TM(M — u)T
Total current at lead 2:
Lo, Ze 2e 2e 2e
L=I7+1I; = TMMT + TMIJz(l —T) — TMNZ = TM(M — u)T




Physics of MQT: Not perfect but ballistic conductor

» Ballistic conductor w/ a single impurity: size of conductor, L <L

Contact 1 Contact 2
TR symmetry
is implied
Mu,T

Iy = 2eM R
1= H1 MR

ZeM

n U2

Total current at lead 1&2:
2e 2e? Uy — Uy 2e?
I'=l =1 ="M — )T =TMT( - ) =~ —MTV

202 Perfect
G =——MT conductor
h T =1




Physics of MQT: Not perfect but ballistic conductor

* Landauer formula for a ballistic conductor w/ a single impurity

2 2 _ 2e? 1 __ h
G=ziMHG=ziMT/[GQ_T&RQ_GQ1_?}

h h

Contact 1 . 1 2 . Contact 2
| I
|




Physics of MQT: Not perfect but ballistic conductor

* Landauer formula for a ballistic conductor w/ a single impurity

2 2 _ 2e? 1 __ h
G=ziMHG=ziMT/[GQ_T&RQ_GQ1_?}

h h
] ] : Seri ti
e Where is the resistance? [ACt“a' reS'Stance] e;'f;ﬁ?;;‘ﬁ;;"”}
N
h Ro Rg Ry Ro1-T

R + R,

= e + =
2e°’MT MT M M M T
—> Voltage drop at contacts: I, =1 X R, = GoMTV X %Q =TV

1—

- Voltage drop at impurity: V; = I X R, = GoMTV X RWQTT =1-T)V

- Total voltage drop: V. + V, =TV + (1 -T)V =V

1 2

Contact 1 Contact 2




Physics of MQT: Not perfect but ballistic conductor

e Where is the resistance?

— Voltage drop at contacts: V, = I X R, = GoMTV X %Q =TV

- Voltage drop at impurity: V; = I X R, = GoMTV X Rﬁ% =1-T)V

- Total voltage drop: V, + V, =TV + (1 —-T)V =V ﬁ
How to measure}

actual resistance?
Drop by TVI N\,

Electrochemical potential

Drop by (1 = T)V

Contact 1 Contact 2




Physics of MQT: Not perfect but ballistic conductor

e Where is the resistance?

— Voltage drop at contacts: I, = I X R, = GoMTV >< =TV

- Voltage drop at impurity: V; = I X R, = GoMTV X — = 1-T)V
- Total voltage drop: V, + V, =TV + (1 —-T)V =V
Rq
* Measure actual voltage drop \

(up1 — upz)/e

I
_a-mv_ h 1-T

I - 2e2M T

» \

Contact 1 . \%- . Contact 2




Physics of MQT: Not perfect but ballistic conductor

Classical Drude model Quantum mechanical model
o O Q Q G E hw Energy is
o g O O @ B dissipated
E ha) )e
\ /
O O O O
Energy d|5$|pat|on Phonon
O O Ole?E%*t/m per tlme (eigen-modes of lattice vibration)

Ashcroft & Mermin, Solid State Physics

Electrochemical potential
Drop by TVI N\,

Drop by (1 — T)V

—Hot

—~—~
Contact 1 . . . Contact 2




Physics of MQT: Not perfect but ballistic conductor

Classical Drude model Quantum mechanical model
o O Q Q G E hw Energy is
& K dissipated
O Q( 0\ o pe :> = E— ho ;P—
\ / )e
O O O O
o Energy d|5$|pat|on Phonon Cold
O O @) e?E?%t /m per tlme (eigen-modes of lattice vibration) reservoir

Ashcroft & Mermin, Solid State Physics
Electrochemical potential

Drop by TVI N\,

el-ph scattering by

[Prevent additional
astray phonons

Dropby (1—-T)V] N\ MNM——_—

Contact 1

Contact 2




Physics of MQT: Not perfect but ballistic conductor

* Are electrons transported by electric field as like Drude model?

Contact 1 . - . Contact 2

Chemical potentlal 4

s . Gradient of chemical potential
<) creening is generated by Neq. Bias
C length

U1 = Uz

Chemical potential /

A

251

»
|

U1 > U

Chemical potential

251

Uz

v




Physics of MQT: Not perfect but ballistic conductor

* Are electrons transported by electric field as like Drude model?

Contact 1 . - . Contact 2

Chemical potentlal

P

Gradient of chemical potential
Screening _ .
is generated by Neq. Bias
C length

U1 = Uz

»
|

U1 > U




Physics of MQT: Not perfect but ballistic conductor

* Are electrons transported by electric field as like Drude model?

Contact 1 . - . Contact 2

Chemical potentlal i .
. Gradient of chemical potential
— Screening is generated by Neq. Bias
V2l = Tl('l_”))/E [ r length

»
>

Electron density Local charge imbalance
Resistivity & local electric field
/ dipole

+ (like pn-junction but by Bias)

»
»




Physics of MQT: Not perfect but ballistic conductor

* Are electrons transported by electric field as like Drude model?

Contact 1 . - . Contact 2
Ch I otentlal 4
emical p s . Gradient of chemical potential
) cll;enerllhng is generated by Neq. Bias
—V2U =n(#) /e - -
Electron density Local charge imbalance
! A Resistivity & local electric field

_ - dipole (like pn-junction but by bias)

VU +f

Far away from impurity,

Electric field T no electric field

try
I

——




Physics of MQT: No perfect & diffusive conductor

* Backtothe Ohm’slaw : [, L <<L, A << W

Contact 1

Contact 2

Chemical potential

— Exaggerated!
L¥ Single impurity will give T < 1

v




Physics of MQT: No perfect & diffusive conductor

* Backtothe Ohm’slaw : [, L <<L, A << W

*x X & *
% * e

Contact 1

Contact 2

Chemical potential

— Exaggerated!
L¥ Single impurity will give T < 1

v




Physics of MQT: No perfect & diffusive conductor

* Backtothe Ohm’slaw : [, [ <<L, A, << W

Contact 1

*

*

*

hem

ical

Contact 2

potential

4

Exaggerated!
Single impurity will give T < 1

|

v



Physics of MQT: No perfect & diffusive conductor

* Backtothe Ohm’slaw : [, L <<L, A << W

Contact 1

Contact 2

* *

Chemical potential




Physics of MQT: No perfect & diffusive conductor

* Backtothe Ohm’slaw : [, [ <<L, A << W [Fuu of phonons]

Contact 1

Contact 2

Chemical potential

Voltage
Uniform electric field due to

View point of Drude model
series of resistivity dipoles

v

‘Electric field




Physics of MQT: No perfect & diffusive conductor

* Backtothe Ohm’slaw : [, [ <<L, A, << W

Contact 1 Contact 2

* Landauer formula for Ohmic regime

G—zeZMT
 h

From Landauer formula,

w
do we recover G = af?

(it might be... if
McxcW&T x<1/L
- ),




Physics of MQT: No perfect & diffusive conductor

* Backtothe Ohm’slaw : [, L <<L, A << W

Contact 1

Contact 2
* Landauer formula for Ohmic regime [Fu" of phonons]
¢ =2 yr
N)
k,2W =nn
kn <km~kr A <<W Diffusive regime, L <<L
kFW"’MT[
Hence, Otherwise, the scattering
problem will be about
kpW "
~ Anderson localization
1T




Physics of MQT: Not perfect but ballistic conductor

° ’ :
Back to the Ohm’s law : L, L <<L, A << W Diffusive conductor

Contact 1

Contact 2
* Landauer formula for Ohmic regime 12 = ThTo + hToR Ry 4
__nhhlp 112
22 1—11?117{2 1;(%1—T1)§1}T2)'
— —112 — — 11 —12
MT Observe — + =2
k,2W =nn a
kn < kMNkF
kFW"’MT[
Hence,

kW




Physics of MQT: Not perfect but ballistic conductor

* Backtothe Ohm’slaw : [, [ <<L, A, << W

)¢ * e *
Contact 1 * e ve Contact 2
A
'

* Landauer formula for Ohmic regime

G 2 MT
N
k,2W =nn T
kn < ky~kp T ho=ia-n
kW ~Mmn T(N) = = (1 —T)vLy~1
Hence, N1-T)+T vL(1-T)+T T <12 Ly ~Lg
kW Impurity density v Ly Ly Ly
~ " T(N) = ~ ~ L, <L
- N =vL (V) L+Ly L+L, L -




Physics of MQT: Not perfect but ballistic conductor

* Backtothe Ohm’slaw : [, [ <<L, A, << W

S *
Contact 1 e ve Contact 2
II
'l
* Landauer formula for Ohmic regime oo W _nettw
22 7L m L’
G = MT forL,, L,<<L, A << W
h
2e2 kpW L 2e*kpLm\ W w
G =2 _ (2l W W
~ h mw L h L L
T
2
L G = e“kp hkptT — ki e’t — ne‘t hkp = mvp = mLy /T
T(N)~T mm T m m & Ly, = hkgt/m

N = nk}[Ak Ak, & n=N/LW = ki/n

57




Physics of MQT: Not perfect but ballistic conductor

* Back to the Ohm’slaw : [, L <<L, A << W

Contact 1 Contact 2

Ohm’s Law is derived

* Landauer formula for Ohmic regime
(Lesson) Now we know

2e* when MQT becomes classical
G=——MT . . .
h from a microscopic view point
) & How limited Drude model is.
W G — 2e% kpW Ly, (Ze kFLm) w
F ~— T L1 ) ; Landauer formalism

" ,_ gives another lesson:

e’kp hkpt kF e’t  ne’rt
— all you need to know for

L
T(N)~— m T m m _ ,
transport is the S-matrix.
(as long as it is a single particle physics)

3
Q
|l



Physics of MQT: multi-terminal transport

6 B

* Buttiker formula: multi-terminal transport

2
I, = Iezq[Tcr—p“p - Tpeq“q] = Zq[quVp Gpq q]

2
. T31 = Ty to have \[G = —Ze T, }
c.f. two-terminal case 2 T = 0 (e i av = T laep

2 2
I = f (To1tq — Tioltz) = fT12(H1 — Uz) =GV

* Sumrule: ¥, G,, =Y,Gygtohave, =0forV, =1, =1}



Physics of MQT: finite voltage bias and temperature

* Beyond the linear response regime: Kubo’s formula is not enough
—> S-matrix, energy-dependent

—> Non-zero temperature

I =22 MT(uy — pz) = <2 MT J[fi(E) — f,(E)]dE

o 2—52 j T (E)fi(E) — fy(E)]dE

Thermoelectric transport
can be dealt
E E
A

-+
!1 + I:. ‘]| --+ IFI
i, — -4,

i S

= Uy

Energy channels

in a conductor

L fHE 1




Application of Landauer-Buttiker formalism

» Usages of Landauer-Biittiker formalism in research (analytical)
— Universal physics: precise S-matrix may not be required much

—> Symmetry: S-matrix can be known solely from symmetry

Ramsauer-Townsend Effect: Ballistic and coherent

A Vix) T
E e ————————————
_V[} N
E
1
T(E) = V2 2a
0 L7 ([ 2
1 +4E(E+VO) sin (h \/Zm(E+VO))




Application of Landauer-Buttiker formalism

» Usages of Landauer-Biittiker formalism in research (analytical)
— Universal physics: precise S-matrix may not be required much

—> Symmetry: S-matrix can be known solely from symmetry

A V(x)

-
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» Usages of Landauer-Biittiker formalism in research (analytical)
— Universal physics: precise S-matrix may not be required much
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Application of Landauer-Buttiker formalism

» Usages of Landauer-Biittiker formalism in research (analytical)
— Universal physics: precise S-matrix may not be required much

—> Symmetry: S-matrix can be known solely from symmetry

A V(x)

-

i1t

r1Tol1l;

(ri12)?t1 Ly




Application of Landauer-Buttiker formalism

» Usages of Landauer-Biittiker formalism in research (analytical)
— Universal physics: precise S-matrix may not be required much

—> Symmetry: S-matrix can be known solely from symmetry

A V(x) ei9 _ arg(rlrz)
2 T, I itz |© _ |t112]¢,)2
-a a - tot 1—7‘1T2 1+|r1|2|T2|2—2|T1||T2| cos 0
x
2
-V, Ttot = |‘L’|2 = T 5 T = |t1|2 = ltzl2
: | T2+4(1-T) sinz(E) R+T=1
I
| I
| I
I
l N
I
nretits Resonant tunneling!

Every back&forth scattering adds 8 = 2nm phase
= constructive interference
K (T=1 despite broken translational symmetry) p

(ri12)?t1 Ly




Application of Landauer-Buttiker formalism

» Usages of Landauer-Biittiker formalism in research (analytical)
— Universal physics: precise S-matrix may not be required much

—> Symmetry: S-matrix can be known solely from symmetry

Resonant tunneling in MQT is universal in that
particular shapes V(x) or materials do not matter

Vi
A V(x) V(x) V(x)

E elkx qe ~tkx

—_— €

= a

-

pe—ikx beikx .reikx




Application of Landauer-Bittiker formalism

» Usages of Landauer-Biittiker formalism in research (analytical)
— Universal physics: precise S-matrix may not be required much

- Symmetry: S-matrix can be known solely from symmetry

et

(a) Odd-layer films

P+ 27

(b) Even-layer films

mx* r@ ]

V(x)<0 V,(x)=0 V(x)>0

E-field

B-field

Sang-Jun Choi, Hai-Peng Sun, and Bjorn Trauzettel, PRB 107, 235415 (2023)



Application of Landauer-Buttiker formalism

» Usages of Landauer-Biittiker formalism in research (analytical)
— Universal physics: precise S-matrix may not be required much

—> Symmetry: S-matrix can be known solely from symmetry

(a) Odd-layer films Odd Iaye I's Even Iaye Irs

Zt X—=-X Tx Tz ++ Mr (a) o 107

X

<107

—_
=
~

N P

G(B)/G,
G(B)/G,

(b) Even-layer films

P

-
-
-
-

Il:} 'rU Il::r }"0
P o |
SO O v T 4 BA/ ®, : : BAl/tbo

S S S

m phase shift of G(B)

Sang-Jun Choi, Hai-Peng Sun, and Bjorn Trauzettel, PRB 107, 235415 (2023)




Application of Landauer-Buttiker formalism

» Usages of Landauer-Biittiker formalism in research (numerical)

— Various geometries and situations can be calculated

GNR w/ GNR w/ "

armchair edge zigzag edge w/2

¥ \’, N .
;’,‘:"" ﬁ HER

74 w2

)

A\

tunneling
current

0 0.00093 0 0.00097
S e - e

w2

-Ww/2

Sang-Jun Choi, Sunghun Park,
and H.-S. Sim, PRB 89, 155412 (2014)



Application of Landauer-Bittiker formalism

» Usages of Landauer-Biittiker formalism in research (numerical)

— Various geometries and situations can be calculated

Censnenruns b e n '
LERICIRIIR YL R U IYY ~
532 nm (CW) PAESRCAB AL NR AN AR IN RN *»
¥ou ronn renn i
= A AR RS (.
A wFL RN Ty .
«‘
¥
@ :
»
Ti/Au

‘i
A s 21T
8 08 00 'A".A'

Graphite =

20 um
—

Monolayer TMD \runnel h-BN

Ti/Au
Graphene >~
h-BN |
-6 4 1
sio, dl =

Electron Qut , &

B

Electron In - a, - System 2

Tae Young Jeong, Hakseong Kim, Sang-Jun Choi, et al., Nature Communications 10, 3825 (2019)
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How to obtain S-matrix using Green functions

* Nonequilibrium Green Function (NEGF) formalism (Keldysh formalism)

Green function = Scattering matrix

* Single-particle Green function:
— Probability amplitude of a propagating particle for an impulse
2

_ " :
E+i0" + %VZ —-UMA| G (7)) =67

_ 2 -
E—i0t + %vz — U@ |Gc*F 7)) =8F 7"

* Fisher-Lee relation for single-mode lead

(for a single mode) s;,, = =8, + ih [v,v,Gg

' Scattering of aﬁ mon of a particle

D. S. Fisher and P. A. Lee, PRB 23, 6851 (1981)




How to obtain S-matrix using Green functions

* Fisher-Lee relation for multimode leads

Snm = —Onm + iAUn U f f Xn (V)G (Vg ¥o) 1tm (7)) dyg dyy
I n-th mode I I m-th mode ‘Indices fo\m
in lead g inlead p

e.g., szL = 1h\[U1RrVy, ff X1rR VR GRL VR VL) I X20 (VL) dyrdy,

NS




How to obtain S-matrix using Green functions

* Fisher-Lee relation for multimode leads

s, = =85+ Tt || 2 (70) G5 (v 3p) i () g1,
I n-th mode m-th mode ‘Indices fo\m
in lead g inlead p

e.g., szL = 1h\[U1RrVy, ff X1rR VR GRL VR VL) I X20 (VL) dyrdy,

m=2
n=1

X)) - ~
S / N _—— -
~ - / ~ //
& T ~e_ GROrYDT" .XlR(yR)T3 R



How to obtain S-matrix using Green functions

* Fisher-Lee relation for multimode leads

s, = ~83h,+ Tt || 2 (70) (G5 (v, 3p)im () g1,

[ For numerical calculations

If we put the system on a lattice with discretization of y,, v,

_ Xm(.Ayp) -

sgﬁlzih\/v_n[)(n(qu) Xn(NquQ)]Ggp ' VVm [p;tq ]
_Xm(NpAyp)_
siy o Sim
s =|: -
SN1 " SNM
\/v_l)(l(AYq) \/v_l)(l(Nquq) \/v_l)(l(qu) WXM(qu)‘
= ih : : Ghy : :
Vonan(Byg) - onxn(Ngdyg) VoL xa(NpAyg) - Omxm(NpAy,)




How to obtain S-matrix using Green functions

2
Discretizing 1D electron gas: HY(x) = — :L—mllj”(x) Yn = P(na)
Tridi | matri
T w i L : e Energy eigenvalues N
- : N ' E(k) = =2t — 2t cos(ka)
-2t —t 0 - Yn-1 ~ h2k2/2m
Hy(x)w» | -t =2t -t - (1) (for ka < 1andt = h?/2ma?)

0 —t —2t .- l/}n+1 (see J.J. Sakurai Modern Quantum
. : : . . Mechanics for diagonalization)

Atomic chain with hopping

Wm 4 energy —2t & on-site energy —t |




How to obtain S-matrix using Green functions

. .. h2
Discretizing 1D electron gas: HY(x) = — %lp”(x) Yn = P(na)
Tridiagonal matrix
| & Q] A , e Energy eigenvalues N
' ' oo ' E(k) = —2t — 2t cos(ka)
-2t —t 0 - Yn-1 ~ h2k2/2m
Hy(x)w» | -t =2t -t - (1) (for ka < 1andt = h?/2ma?)
v 0 —t —2t .- l/}n+1 (see J.J. Sakurai Modern Quantum

Mechanics for diagonalization)

Atomic chain with hopping

W 4 energy —2t & on-site energy —t |

Discretizing 2D electron gas ¥y, = Y(na,, ma,)

[ H is a block- tr|d|aw] g




How to obtain S-matrix using Green functions

Xm(AyP)
* Sum = Tnlxn(8yg) - xn(NgAyg)|Gey |V
Xm(NpAyp)
lef S{’}é’z]
sw=|7: -
Sxni T Swm
Voxi(Byg) - Vo (Ngdyg) Vouxi(8yg) - umxm(Byg)
= ih : : Gl : ;
Vonan(Byg) - Vonxn(Ngbyg) Voixi(NpAyg) - omxm(NpAyg)
* Transmission from S-matrix (p # q)
 VoXm@DXm @) T @0 2m (Pn,)

ot (o) 1@ ot () 1o (o).
How do we get
I,,G", [, G?




How to obtain S-matrix using Green functions

* Steps to obtain I, G", I, G* numerically

1) Calculate surface retarded Green function of semi-infinite leads

gL R(E) = [(E + il —Hyg] ™
2) Obtain self-energy: additional matrix elements to H,; from leads
2.(E) = Hypgr (E)[Hy]" & ZR(E) = [Hry] " gr(E)Hgum
3) Obtain Gamma's: [} ; = i[Z, z — 2]
4) Obtain Green functions of middle region, G* = [G"]™
G"(E) = [(E+in] —Hy —Z, —Zg]™*
Huw

Hgpym
System ﬁ Semi-infinite lead on right

Semi-infinite lead on left T For an intuitive understanding,
M See S. Datta’s
Quantum Transport: Atom to Transistor




How to obtain S-matrix using Green functions

Encrgy

o F

0 |
Transmission

HMLA

Hpm
System ﬁ Semi-infinite lead on right

Semi-infinite lead on left T For an intuitive understanding,
M See S. Datta’s
Quantum Transport: Atom to Transistor




How to obtain S-matrix using Green functions

 Matlab code (subroutines available upon request)

tl = -1.0;
tr = -1.0;

hopping energy of left region
hopping energy of right region

o° oo

nL = 100; % # of lateral sites of left region

nR = 10; % # of lateral sites of right region

n0 = 20; % position of junction

nS = 10; % # of longitudinal lattice sites

$ Energy window to calculate IxLM hOT,

En = 0 : 0.0025*%2 : 0.5; /\

% Hamiltonian generation A ¢ /\
hOL = The make tridiagonal(-4*tl,tl,nL,1); nRk
txL = tl*eye (nl);

hOR = The make tridiagonal(-4*tr,tr,nR,1); iﬁt ¢ I
txR = tr*eye (nR);

txLR = zeros (nL,nR);

txLR (n0+1:n0+nR,1:nR) = tr*eye (nR); €«

txRL = txLR'; nS

HOL = The make tridiagonal (hOL, txL,nS,nL);

HOR = The make tridiagonal (hOR, txR,nS,nR);

HO = The_Connect(HOR,HOL,tXLR,tXRL,O); V(

nM = length (HO) ;

TxLM = zeros (nL, nM) ; ¢ 3

TxIM(1l:nL, nM-nL+1:nM) = txL; S

TxML = TxLM'; n

TxRM = zeros (nR, nM) ;

TxRM(1l:nR,1:nR) = txR;

TxMR = TxRM';




How to obtain S-matrix using Green functions

 Matlab code (subroutines available upon request)

* Steps to obtain I, G", [},, G* numerically
1) Calculate surface retarded Green

function of semi-infinite leads

] -1
grr(E) = [(E + in)l — HL,R]
2) Obtain self-energy: additional matrix

elements to Hy; from leads
2.(E) = Hyrg1 (E)[Hp]"
ZR(E) = [Hrm]* gr(E)Hpy

3) Obtain Gamma’s: [} p = i[Z’L,R — Z'Z”R]

4) Obtain Green functions of middle region,

Ga — [GT]+
G"(E) =[(E+in] —Hy -2, —2g]™!

% Calculating transmission from Green functions
Tmp = zeros (nM,length (En));
for n=1l:1length (En)

en = En(n);

gL = leftL(en,h0L, txL,nL);

gR = leftL(en,hOR, txR,nR);
selfl, = TxML*gL*TxLM;
selfR = TxMR*gR*TxRM;

gamL = 1i*(selflL-selfl’);
gamR = 1i* (selfR-selfR'");

gM = inv(en*eye (nM) - HO - selfl - selfR);
T(n,1l) = trace(gamL*gM*gamR*gM'); % Transmission
T(n,2) = trace(gamR*gM*gamL*gM') ;
Tmp (:,n) = —-imag(diag(gM))/pi; % for Ldos
end

% Generating Ldos
for n=1:1length (En)
Ldos {n} = zeros(nL,2*nS) -1;
for m=1:nS
tmp = (m-1)*nR;
Ldos_ {n} (n0+1:n0+nR,m) = Tmp (tmp+1l:tmp+nR,n);
end
for m=nS+1:2*nS
tmp = 10*nR + (m-nS-1)*nL;
Ldos {n} (1:nL,m) = Tmp (tmp+1:tmp+nL,n);
end
Ldos {n} = fliplr(Ldos {n});
end

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIE%III



How to obtain S-matrix using Green functions

* Application to more complex systems
— spinful systems (including SO-coupling)
— superconducting systems (s/p-wave superconductivity)

Stacking an atomic chain to a

) nanowire with SO-coupling & s-wave
(’ M’ M M M M ’) SC leads to topological SC

(.) (.) (.) ('l—(.)—(.) 2n =
3n =
' 2 Eulk 2 Edk B ( ﬁfjiﬁ)ﬁii) ________ =
(b) () (c) (k) L MZM
‘f 7 7; g Wud_ﬂ W, =0 ‘
o J 5 e
/1t 0 /1ty 0.5
[ tucosk — ., —ilsosink A 0 ‘—23‘—“*2 —tafwz o\
ilsosink  t,cosk — p, 0 A it .
A 0 —ty cosk + iy ilso sin k _”—"’wl LA Va5 §
Hpdc = - : _1,2%_1”2 —vzg—wz
0 A —ilsosink  —t, cosk + iy —= —=
—U22—w2 vty — v+ —va+iwg td cos k — iy 0
. - —Uzz—{—wz V4 —Qw] —’Ulg—’wl —?ng—lt‘z 0 —tgcosk + Hd /
Hamiltonian

in k-space

Sang-Jun Choi and Bjorn Trauzettel, PRB 107, 245409 (2023)




Beyond coherent & metallic conductions

e More about Landauer-Biittiker formalism

—> MQT is quantal: DC current = (i), i.e., long-time average of current
— Shot noise is also available [M. Biittiker, (1990)]

2e? 2e?
S =25 |evitr(ettrrt) = 2 |ev] Z T.(1-T,)
h h .

IfallT,, < 1,8 = 2ell|.

— Periodically driven quantum pumps can be dealt [M. Buttiker, (1990)]

dl e (8SdS* 0SS
dE _ '2n\dt 0E OE ot

L A a R 1, (t)




Beyond coherent & metallic conductions

* Beyond Landauer-Buttiker formalism: other methods for MQT

Vb (mV)
N 9 0P 0B o

Inelastic electron tunneling ey OGS
via el-ph interaction

K Kk, K
=5 T
& 3 i Blagh P
" K " |MK"XHI IM“n-"]
0 t
' '
K Kk K kK Ky K e -300
Source / Drain
a5 e Ners g 7 PR R LIS e T —\\ > on
+ (Mxr Xy Mxnv") Mx’x\ M‘& x E + (Mx’x‘ M"L") Mx’vx“ M:||“ E \ ” -600 |
K K' K 4 < + >
vdwW I’ M K Q I’ vdw !

T T T T T T
60 -40 -20 O 20 40 60

)

'
K Ky K

st =|Mk, |Z | K[Z

Sk o

o
1

DH Lee, Sang-Jun Choi (equal), et al., Nat. Commun. 12, 4520 (2021)

[ Nonequilibrium Josephson effects }

v v
Vg Vg
I 1
0 % LI, i

Sang-Jun Choi and Bjorn Trauzettel, PRL 128, 126801 (2022)
Aritra Lahiri, Sang-Jun Choi (corresponding), and Bjorn Trauzettel, PRL 131, 126301 (2023)
Aritra Lahiri, Sang-Jun Choi, and Bjorn Trauzettel, arXiv: 2402.13074 (2024)



Beyond coherent & metallic conductions

e More about Landauer-Biittiker formalism

—> MQT is quantal: DC current = (f), i.e., long-time average of current
— Current shot noise is also available [M. Biittiker, PRB 46, 12485 (1992)]

— Periodically driven quantum pumps can be dealt [M. Bittiker, (1990)]

* Beyond Landauer-Buttiker formalism: other methods for MQT

Landauer-Biittiker Intuitive & quick calculations. Cannot deal with many-
Finite voltage bias & temperature body physics
Kubo’s linear Relatively easy & quick, while Only allows physics around
response theory allowing many-body physics equilibrium states
Master equation AIIOW|.n.g many-!oody ph.ysms & Partlcula.rly use.ful at
Nonequilibrium bias & finite temp. tunneling regime
Keldysh formalism All the above Not so easy for everyone



