2. Universal gate set,
quantum circuit



Universal quantum gates

* The goal is to generate an arbitrary unitary in U(2").
N~
* The Lie algebra of U(2") consists of 2" X 2" anti-Hermitian matrices.

* Claim: Single- and two-qubit gates generate the universal gate set.
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Single-qubit gates

* Basis: |0),]1)
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Two-qubit gates

* Basis: | 00),|01), | 10), | 11)

* Examples: CNOT, CZ
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n-qubit gates

* Basis: | x), where x is a n-bit string.
* Examples: Pauli product operators: P Q P, ® ... Q P,, . P--Pell x vz}




Universality

* To prove universality, it suffices to show that one can generate exp(iHot) for any
Hermitian operator H, with 6 < 1. e—————

* Basic idea: Decompose H into the canonical Pauli basis and apply infinitesimal
rotation generated by each Pauli Product operators.
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Experiments

As of now (Year 2021), the one and two-
qubit gates have been implemented
successfully in superconducting qubits, ion
traps, neutral atoms, NV-centers,

(=pretty much any quantum technology) ;,mmmmﬂm ":iﬁmmm_mm,
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Noise

* In real experiments, no gate is implemented perfectly.

* Current noise rate: 107> ~ 1072, depending on the technology.
N~

* This means that we cannot run a long computation and hope to get a correct result.



State-of-the-art quantum algorithms

* As of now, quantum algorithms with commerC|aI applications which are (almost)
guaranteed to work requires at least 10 ~ 107 gates.

* To get a correct result with high probablllty, the error rate must be much smaller than
1078 ~ 107°.

* Current consensus is that we won’t be able to achieve that without quantum error
correction. S



Quantum Error Correction

* Using quantum error correction, we can reduce the error.

* However, once we start using quantum error correction, the set of gates we can use
becomes more restrictive.

* In fact, any reasonably continuous gate set, e.g., {exp(i60Z) : 0 € R} is
incompatible with quantum error correction. [Eastin and Knill (2009)]
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Universal Fault-tolerant quantum gates

* Fortunately, there is a discrete set of universal gate set which is compatible with
quantum error correction.

* There are different choices, but the following two is the standard.
Clifford + T
Hadamard + Toffoli
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Solovay-Kitaev theorem

[Solovay (1995), Kitaev (1997)] Given a universal gate set, one can find a gate
sequence of length O(log(1/¢€)) to approximate arbitrary unitary with an error of €.

So, being restricted to a discrete gate set is not a problem.



Cliffords

* Clifford gates are unitaries U such that for every Pauli Product operator P, UPU",is
again a Pauli Product Operator.

* The Clifford group (consisting of Clifford gates) is generated by H, S, and CNOT .
* Clifford gates are cheap, compared to non-Clifford gates. ( Fat ~olage M)
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Non-Clifford gates

A quantum computation consisting of Clifford gates can be efficiently simulated on a
classical computer. [Gottesman-Knill theorem]

To utilize the full power of quantum computation, we need gates outside of the Clifford
group. These are called as non-Clifford gates. (( 5
T: o\]‘;\'

Non-Clifford gates are more expensive than Clifford gates. They are slower and
requires more qubits to implement.

ex) T-gate, Toffoli gate

Most of the time, the cost of a quantum algorithm is determined by the number of non-
Clifford gates.



Rotations

* Rotations like exp(i6Z) may seem like the easiest gate you can implement.

* However, in a fault-tolerant quantum computer, this is even more expensive than non-
Clifford gates.

* Atthis point, the (near-)optimal gate sequence can be efficiently computed on a
uter. F ion €, for general angle, we can implement this using

3log,(1/€) + O(loglog(1/¢€)) T-gates. This is optimal. [Ross and Selinger (2012)].
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Cost analysis of different gates
( ot -olermt QL word

Using the current best known fault-tolerant gate implementations, the number of qubits
needed x time is (roughly):

* Clifford: 1 LT, CZ, ¥, S
T-gate: 100 \“\5 1 Gk ghtes
* Rotation: 10,000
N



Summary

* One- and two-qubit gates are universal.
* Fault-tolerant universal gate set: Clifford + non-Clifford(T-gate or Toffoli)
—_— 0

* Clifford << non-Clifford << Arbitrary rotation
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