The 11th School of Mesoscopic Physics: Quantum Control and Sensing

Quantum Sensing and Imaging Using Diamond NV Center

Donghun Lee

Department of Physics, Korea University

Quantum Mechanics

반도체 이론, 기초 실험

Se photocell (1931, Weston)

진공튜브 컴퓨터 (1946, ENIAC)

- Duality
- Uncertainty
- Superposition
- Entanglement

Quantum Technology

- Quantum computation
- Quantum communication
- Quantum simulation
- Quantum sensing

양자정보 이론, 기초 실험

양자컴퓨터 (?)

개념 및 정의	참고문헌
양자시스템(예, 큐비트) 또는 양자결맞음(예, 중첩)을 이용하여 물리량(예, 온도, 자기장)을 측정하는 기술	[1]
양자얽힘(entanglement), 압착(squeezing) 등 양자특성을 이용하여 물리량을 양자한계(standard quantum limit) 이하로 측정하는 기술	[1]
고전시스템만을 사용했을 때 얻을 수 있는 것보다 더 나은 민감도와 분해능을 얻기 위해 양자얽힘과 같은 양자특성을 활용하는 기술	[2]
기존 센서/이미징의 정밀도를 획기적으로 개선하고 새로운 초정밀 양자센서/이미징 산업을 창출할 수 있는 기술을 포함	[2]

[1] C. L. Degen, F. Reinhard, P. Cappellaro, "Quantum Sensing", Reviews of Modern Physics 89, 0034-6861, 2017.

[2] 정보통신기술진흥센터 ICT R&D 기술로드맵 2023.

L. Pezze et al., Rev. Mod. Phys. 90, 035005 (2018)

Sensitivity of quantum sensor

민감도 (sensitivity)
$$\approx \frac{1}{\sqrt{N}} \frac{1}{\sqrt{T}}$$

$$\left[\frac{물리량}{\sqrt{Hz}}\right]$$

N: # of measurements or # of sensors

T : Coherence time , T_1 , T_2 , ${T_2}^*$

Example : Gravitational Wave Detection

LIGO (Laser Interferometer Gravitational-Wave Observatory), Nobel prize at 2017

LIGO (Laser Interferometer Gravitational-Wave Observatory), Nobel prize at 2017

50 % improvement with quantum squeezed light

M. Tse et al., PRL 123, 231107 (2019)

Classification of quantum sensing

▶ 양자센서에 따른 분류

▶ 센싱 물리량에 따른 분류

Classification of quantum sensing

대분류	소분류	売り	측정하는양	진동수	초기화	상태읽기
중성원자	원자증기	원자 스핀	자기장, 회전, 시간/진동수	dc-GHz	광학	광학
	차가운 구름	원자 스핀	자기장, 가속도, 시간/진동수	dc-GHz	광학	광학
갇힌 이온	_	스마이 기 저지 스테	시간/진동수	THz	광학	광학
		<u> </u>	회전	_	광학	광학
		진동 모드	전기장, 힘	MHz	광학	광학
리드버그원자	_	리드버그 상태	전기장 dc, GHz		광학	광학
고체 스핀 (앙상블)	NMR 센서	핵 스핀	자기장	dc	열	픽업 코일
	NV 센터 앙상블	전자스핀	자기장, 전기장, 온도, 압력, 회전	dc-GHz	광학	광학
고체 스핀 (단일 스핀)	Si 반도체의 P 도너	전자스핀	자기장	dc-GHz	열	전기
	반도체 양자 점	전자 스핀	자기장, 전기장	dc-GHz	전기, 광학	전기, 광학
	단일 NV 센터	전자스핀	자기장, 전기장, 온도, 압력, 회전	dc-GHz	광학	광학
초전도 회로	SQUID	초전류	자기장	dc-GHz	열	전기
	Flux 큐빗	순환전류	자기장	dc-GHz	열	전기
	전하큐빗	전하고유상태	전기장	dc-GHz	열	전기
기본입자	뮤온	뮤온 스핀	자기장	dc	방사성 붕괴	방사성 붕괴
	중성자	핵스핀	자기장, 포논 밀도, 중력	dc	브래그 산란	브래그 산란
기타센서	SET	전하 고유상태	전기장	dc-MHz	열	전기
	광역학계	포논	힘, 가속도, 질량, 자기장, 전압	_	_	_
	간섭계	광자, (원자, 분자)	변위, 굴절률	_	_	_

➢ Part 1 : 스핀 큐비트 기반 양자센싱 기초 원리

▶ Part 2 : 다이아몬드 NV 센터 소개

▶ Part 3 : NV 센터 기반 양자센싱 및 이미징 연구 소개

Part 1 : 스핀 큐비트 기반 양자센싱 기초 원리

$$I.1 \quad \text{Qubit} \quad (\text{Two level system})$$

$$E = hw_{2} \qquad \text{or} \qquad \text{or}$$

$$E = hw_{2} \qquad \text{or} \qquad \text{or}$$

$$Qubit \quad \text{state} \quad 14>, \quad |4>, \quad |4>, \quad |4> = 0 \qquad -\frac{4w_{2}}{2}$$

$$Qubit \quad \text{state} \quad 14> = |4|> + |4|^{2} = 1 \qquad)$$

$$\Rightarrow \quad 14> = |4|> + |6|^{2} = 1 \qquad)$$

$$\Rightarrow \quad 14> = |4|> + |6|^{2} = 1 \qquad)$$

$$\Rightarrow \quad 14> = |4|> + |6|^{2} = 1 \qquad)$$

$$\Rightarrow \quad 14> = |4|> + |6|^{2} = 1 \qquad)$$

$$\Rightarrow \quad 14> = |4|> + |6|^{2} = 1 \qquad)$$

$$\Rightarrow \quad 14> = |4|> + |6|^{2} = 1 \qquad)$$

$$\Rightarrow \quad 14> = |4|> + |6|^{2} = 1 \qquad)$$

$$\Rightarrow \quad 14> = |4|> + |6|^{2} = 1 \qquad)$$

$$\Rightarrow \quad 14> = |6|> + |6|^{2} = 1 \qquad)$$

$$\Rightarrow \quad 14> = |6|> + |6|^{2} = 1 \qquad)$$

$$\Rightarrow \quad 14> = |6|> + |6|^{2} = 1 \qquad)$$

$$\Rightarrow \quad 14> = |6|> + |6|^{2} = 1 \qquad)$$

$$\Rightarrow \quad 14> = |6|> + |6|^{2} = 1 \qquad)$$

$$\Rightarrow \quad 14> = |6|> + |6|^{2} = 1 \qquad)$$

$$\Rightarrow \quad 14> = |6|> + |6|^{2} = 1 \qquad)$$

$$\Rightarrow \quad 14> = |6|> + |6|^{2} = 1 \qquad)$$

$$\Rightarrow \quad 14> = |6|> + |6|^{2} = 1 \qquad)$$

$$\Rightarrow \quad 14> = |6|> + |6|> + |6|^{2} = 1 \qquad)$$

$$\Rightarrow \quad 14> = |6|> +$$

• TT around
$$\hat{x}$$
: $(07 \rightarrow 11)$, $(17 \rightarrow 10)$
 $X \equiv \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 6\chi$
• TT around \hat{F} :
 $Y \equiv \begin{pmatrix} 0 & -\tilde{c} \\ \bar{c} & 0 \end{pmatrix} = 6g$

.3. Qubit Hamiltonian

$$H = kw_{g} |1> < 11 + 0.(0) < 0|$$

$$= \frac{kw_{g}}{2} |1> < 11 - \frac{kw_{g}}{2} |0> < 0|$$

$$= -\frac{kw_{g}}{2} (\frac{1}{0} - 1) = -\frac{kw_{f}}{2} r_{2}$$

1) time evolution

$$\frac{\partial}{\partial t}(\psi) = -\frac{i}{t_{1}}H(\psi), \quad \mu = -\frac{\hbar\omega}{2}c_{2}$$

$$\rightarrow \frac{\partial}{\partial t}\begin{pmatrix} d \\ \beta \end{pmatrix} = -\frac{i}{t_{1}}\left(-\frac{\hbar\omega}{2}\right)\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\begin{pmatrix} d \\ \beta \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} d \\ \beta \end{pmatrix} = \begin{pmatrix} \frac{i}{2}\frac{\omega}{2} \\ -\frac{i}{2}\frac{\omega}{2} \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} d \\ \beta \end{pmatrix} = \begin{pmatrix} \frac{i}{2}\frac{\omega}{2} \\ -\frac{i}{2}\frac{\omega}{2}\beta \end{pmatrix}$$

$$\rightarrow d(t) = e^{+\frac{i}{2}\frac{\omega}{2}t} d(0), \quad \beta(t) = e^{-\frac{i}{2}\frac{\omega}{2}t} \beta(0)$$

$$\therefore pucen \quad nt \quad \omega_{g}$$

$$(\lambda | \mathfrak{Q} | 1'')$$

$$\begin{array}{l} \textcircled{O} \quad \end{tabular} \\ \hline & & \end{ta$$

$$\begin{split} \left((\cos v \pi) \rho = \frac{1}{2} \left(\rho^{\tau v \pi} + \rho^{-\tau v \pi} \right) \stackrel{\sim}{\rho} \rho^{-\tau \frac{v}{2} \pi} \\ &= \frac{1}{2} \left(\rho^{\tau \frac{v}{2} \pi} + \rho^{-\tau \frac{v}{2} \pi} \right) \stackrel{\sim}{\rho} \approx \frac{1}{2} \rho^{\tau \frac{v}{2} \pi} \stackrel{\sim}{\rho} \\ &= \frac{1}{2} \left(\rho^{\tau \frac{v}{2} \pi} + \rho^{-\tau \frac{v}{2} \pi} \right) \stackrel{\sim}{\rho} \approx \frac{1}{2} \rho^{\tau \frac{v}{2} \pi} \stackrel{\sim}{\rho} \\ \stackrel{\sim}{\sim} &\approx -\frac{hw_{2}}{2} \left(\frac{2}{\rho} \rho^{-\tau \frac{v}{2} \pi} \right) + \frac{h\Omega}{2} \left(\frac{2}{\rho} \rho^{-\tau \frac{v}{2} \pi} \right) \\ \stackrel{\sim}{\sim} &\approx -\frac{hw_{2}}{2} \left(\frac{2}{\rho} \rho^{-\tau \frac{v}{2} \pi} \right) + \frac{h\Omega}{2} \left(\frac{2}{\rho} \rho^{-\tau \frac{v}{2} \pi} \right) \\ \stackrel{\sim}{=} -\frac{h\delta}{2} \delta_{2} \left(\frac{2}{\rho} \right) + \frac{h\Omega}{2} \delta_{\alpha} \left(\frac{2}{\rho} \right) \\ \stackrel{\sim}{=} -\frac{h\delta}{2} \delta_{2} \left(\frac{2}{\rho} \right) + \frac{h\Omega}{2} \delta_{\alpha} \left(\frac{2}{\rho} \right) \\ \left(\int_{\Xi} w_{2} - w \right) \int_{\Xi} \int_$$

Part 2 : 다이아몬드 NV 센터 소개

Nitrogen-vacancy (NV) defect centers in diamond

Nitrogen-vacancy (NV) defect centers in diamond

- S = 1 ground states i.e. $m_s = 0$, $m_s = \pm 1$
- Spin levels are very sensitive to external magnetic field
- Magnetic signal is optically detected (ODMR)

Nitrogen-vacancy (NV) defect centers in diamond

- S = 1 ground states i.e. $m_s = 0$, $m_s = \pm 1$
- Spin levels are very sensitive to external magnetic field
- Magnetic signal is optically detected (ODMR)

- S = 1 ground states i.e. $m_s = 0$, $m_s = \pm 1$
- Spin levels are very sensitive to external magnetic field
- Magnetic signal is optically detected (ODMR)

|0>

0)

- S = 1 ground states i.e. $m_s = 0$, $m_s = \pm 1$
- Spin levels are very sensitive to external magnetic field
- Magnetic signal is optically detected (ODMR)

|0>

0)

- S = 1 ground states i.e. $m_s = 0$, $m_s = \pm 1$
- Spin levels are very sensitive to external magnetic field
- Magnetic signal is optically detected (ODMR)

Experimental confocal optics setup

Physical property	Sensitivity		Physical property		Sensitivity		References	
Magnetic field	< 1 nT/Hz ^{1/2} (single NV) < 1 pT/Hz ^{1/2} (ensemble)		Temperature		< 1 mK/Hz ^{1/2}		J. Taylor et al., Nat. Phys. 2008 T. Wolf et al., PRX 2015 F. Dolde et al., PRL 2014 K. Lee et al., PR Applied 2016 G. Kuscko et al., Nature 2013 A. Ajoy et al., PRA 2012 M. Doherty et al., PRL 2014 R. Schirhagl et al., Ann. Rev. Phys. Chem. 2014	
Electric field	< 100 Vcm ⁻¹ /Hz ^{1/2}		Rotation		< 1 mdeg /Hz ^{1/2}			
Strain field	< 10 ⁻⁷ /Hz ^{1/2}		Pressure		< 0.1 MPa/Hz ^{1/2}			
Spatial resolution	~ 10 nm	Detecti	tection bandwidth DC		– GHz	Op temp	erating perature	Sub K to RT
Other advantages	 chemically sta optically stable suitable for de 	ble, non-t e (free fro vvices (nai	coxic and bio-frie om photobleachin no fabrication)	ndly ng)				

Part 3 : NV 센터 기반 양자센싱 및 이미징 연구 소개

Quantum sensing examples

F. Casola et al., Nat. Rev. Mater. (2018)

C. Degen et al., Rev. of Mod. Phys. (2017)

Quantum sensing examples

F. Casola et al., Nat. Rev. Mater. (2018)

 $\sum_{x}^{z} \frac{y}{x}$

Diamond tip

NV e⁻spin

BiFeO₃

Microscope objective

RF

normalized PL 0.8

N. Aslam et al. Science 2017

Le Sage et al. Nature 2013

I. Gross et al. Nature 2017

$$|1\rangle - \left(\left(\left(\begin{array}{c} \\ \end{array} \right) \right) \right) - \left(\left(\begin{array}{c} \\ \end{array} \right) \right) \right) - \left(\begin{array}{c} \\ \end{array} \right) - \left(\begin{array}{c} \\ \end{array} \right) \right) - \left(\begin{array}{c} \\ \end{array} \right) - \left(\begin{array}{c} \\ \end{array} \right) \right) - \left(\begin{array}{c} \\ \end{array} \right) - \left(\begin{array}{c} \end{array} \right) - \left(\begin{array}{c} \\ \end{array} \right) - \left(\begin{array}{c} \end{array} \right) - \left(\begin{array}{c} \\ \end{array} \right) - \left(\begin{array}{c} \end{array} \right) - \left(\end{array} \right) - \left(\begin{array}{c} \end{array} \right) - \left(\end{array} \right) - \left(\end{array} \right) - \left(\begin{array}{c} \end{array} \right) - \left(\end{array} \right) -$$

Optically-detected ESR

Initialization

|0>

Ramsey Interferometry

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

Ramsey Interferometry

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

Ramsey Interferometry

Ramsey Interferometry

Ramsey Interferometry

 ΔE

|1>

 $|0\rangle$

spin Hahn echo

$$\phi = \phi_1 - \phi_2 = 0$$

for DC signal

|1>

 $|0\rangle$

General quantum sensing methods

DC (dc ~ kHz) : Ramsey AC (kHz ~ 100 kHz) : Echo AC (~ MHz) : CPMG, XY4, XY8 \vdots AC (~ GHz) : T₁ relaxometry

R. Schirhagl et al., Annu. Rev. Phys. Chem. (2014)

Quantum sensing protocol

C. L. Degen et al., Rev. of Mod. Phys. (2017)

Advanced quantum sensing with multi-qubits

CPMG based $C_e NOT_n$ operation

Advanced quantum sensing with multi-qubits

Advanced quantum sensing with multi-qubits

Quantum sensing below standard quantum limit

 $|m_{\rm N}| = +1$

T. Xie et al. Science Advances (2021)

Optical image of Pt wire

• Magnetic field image of the dashed area

Imaging example with current device

• Optical image of Pt wire

Imaging example with graphene device

Graphene sample (Prof. Gil-Ho Lee, POSTECH)

Is a single component of magnetic field enough to reconstruct current profile ? Yes!

Imaging example with graphene device

Is a single component of magnetic field enough to reconstruct current profile ? Yes!

Imaging example with graphene device

$\underline{Current: left \leftarrow right}$

Magnetic field (experiment)

Magnetic field (simulation)

Recontructed current density

More imaging examples

2D ferromagnetism

B_{NV}-B^{bias}(mT) 0.35 0 -0.35

Anti-ferromagnetic order

L. Thiel et al., Science (2019)

I. Gross et al. Nature (2017)

More imaging examples

Imaging viscous flow in graphene

Imaging magnetic domains in twisted Crl₃

Imaging with wide-field quantum microscope

More imaging examples

Le Sage et al. Nature (2013)

J-T Tetienne et al. Science Advacnes (2017)

Glenn et. al. Geo. Geophys. Geosys. (2017)

Chen et. al. PNAS (2022)

McCoey et. al. Small (2020)

▶ 스핀 큐비트 기반 양자센싱 기초 원리 (e.g. Ramsey, echo, dyanimcal decoupling, etc.)

▶ 다이아몬드 NV 센터 소개

- ▶ NV 센터 기반 양자 센싱 소개
- ▶ NV 센터 기반 양자 이미징 소개

- ▶ Quantum sensing, quantum metrology (양자센싱, 양자계측)
- ▶ 측정은 모든 물리 실험의 기본
- ▶ 양자센싱 및 이미징은 양자현상에 기반한 물리 실험의 새로운 방법론 제공
- ▶ 중시계 등 다양한 기초·응용 물리 실험에 활용 가능

