Introduction to Superconductivity & Device Application with Quantum Materials

Gil-Ho Lee

Dept. of Physics, POSTECH, Korea

The 12th School of Mesoscopic Physics: Hybrid Quantum Systems

Basics of Superconductivity & Josephson Junction

Superconductivity

Superconductivity of Mercury (1911)

Superconductivity: Macroscopic Quantum Phenomena

Macroscopic quantum phenomena

10²³-electroncs in superconductor behaves as a single quantum object

BEC condensate of atoms

Laser

Quantum Electronics

Tunneling Josephson Junction (JJ)

n: density of Cooper pair*φ*: phase of order parameter*K*: Coupling parameter

Equation of motion for JJ $\begin{cases} i\hbar \frac{\partial \Psi_1}{\partial t} = U_1 \Psi_1 - K \Psi_2 \\ U_1 - U_2 = qV \\ q = 2e \end{cases}$ $i\hbar \frac{\partial \Psi_2}{\partial t} = U_2 \Psi_2 - K \Psi_1$ We set $\frac{U_1 + U_2}{2} = 0$, then $U_1 = \frac{qV}{2}$, $U_2 = -\frac{qV}{2}$ $\frac{\partial \Psi_{1}}{\partial t} = \frac{1}{2\sqrt{n_{1}}} e^{i\varphi_{1}} \frac{dn_{1}}{dt} + i\sqrt{n_{1}} e^{i\varphi_{1}} \frac{d\varphi_{1}}{dt} = \frac{qV}{2i\hbar} \sqrt{n_{1}} e^{i\varphi_{1}} - \frac{K}{i\hbar} \sqrt{n_{2}} e^{i\varphi_{2}} - \text{Eq. (1)}$ $\frac{\partial \Psi_{2}}{\partial t} = \frac{1}{2\sqrt{n_{2}}} e^{i\varphi_{2}} \frac{dn_{2}}{dt} + i\sqrt{n_{2}} e^{i\varphi_{2}} \frac{d\varphi_{2}}{dt} = -\frac{qV}{2i\hbar} \sqrt{n_{2}} e^{i\varphi_{2}} - \frac{K}{i\hbar} \sqrt{n_{1}} e^{i\varphi_{1}} - \text{Eq. (2)}$ (1) × $e^{-i\varphi_1}$, (2) × $e^{-i\varphi_2}$ Phase difference: $\varphi \equiv \varphi_2 - \varphi_1$

$$\frac{1}{2\sqrt{n_1}}\frac{dn}{dt} + i\sqrt{n_1}\frac{d\varphi_1}{dt} = -i\frac{qV}{2\hbar}\sqrt{n_1} + i\frac{K}{\hbar}\sqrt{n_2}e^{i(\varphi_2-\varphi_1)} - \text{Eq. (1)'}$$
$$\frac{1}{2\sqrt{n_2}}\frac{dn}{dt} + i\sqrt{n_2}\frac{d\varphi_2}{dt} = +i\frac{qV}{2\hbar}\sqrt{n_2} + i\frac{K}{\hbar}\sqrt{n_1}e^{-i(\varphi_2-\varphi_1)} - \text{Eq. (2)'}$$

DC & AC Josephson Relationship

by using
$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$
, $\frac{1}{2\sqrt{n_1}}\frac{dn_1}{dt} + i\sqrt{n_1}\frac{d\varphi_1}{dt} = -i\frac{qV}{2\hbar}\sqrt{n_1} + i\frac{K}{\hbar}\sqrt{n_2}(\cos\varphi + i\sin\varphi) - \text{Eq. (1)}^{"}$
 $\frac{1}{2\sqrt{n_2}}\frac{dn_2}{dt} + i\sqrt{n_2}\frac{d\varphi_2}{dt} = +i\frac{qV}{2\hbar}\sqrt{n_2} + i\frac{K}{\hbar}\sqrt{n_1}(\cos\varphi - i\sin\varphi) - \text{Eq. (2)}^{"}$

 I_{S}

• Real part of Eqs. (1)" and (2)"

DC Josephson relationship
$$I_s = I_c \sin \varphi$$

• Imaginary part of Eqs. (1)" and (2)"

AC Josephson relationship
$$\frac{d\varphi}{dt} = \frac{2e}{\hbar}V$$

Typical Current-Voltage Characteristics of JJ

Angle Evaporation for Tunneling JJ

ZEP is an EBL resist PMGI is an EBL resist AND liftoff layer

Irradiate with electron beam

Oxidize the first layer

POSTECH

V2015 HV mag 🗆

Various types of Josephson Junctions

Fraunhofer Pattern

• With external magnetic field $B\hat{y}$,

POSTECH

Single Slit

Diffraction

SQUID (Superconducting Interference Device)

Two JJs connected in parallel

$$\varphi_{\text{total}} = \varphi_2 - \varphi_1 + 2\pi \frac{\varphi}{\varphi_s} = 2\pi n$$

$$\varphi_1 - \varphi_2 = 2\pi \frac{\Phi}{\Phi_s} \pmod{2\pi}$$

 Φ : external magnetic flux threading SQUID loop $\Phi_{\rm s} = h/2e$: flux quantum for Cooper pairs *n*: integer number

• Supercurrent through SQUID:

$$I_{s,SQ} = I_c \sin \varphi_1 + I_c \sin \left(\varphi_1 - 2\pi \frac{\Phi}{\Phi_s} \right)$$
$$= 2I_c \cos \left(\frac{\pi \Phi}{\Phi_s} \right) \sin \left(\varphi_1 - \pi \frac{\Phi}{\Phi_s} \right)$$

• Critical current for SQUID:

$$I_{c,SQ} = \max_{\varphi_1} I_{s,SQ}(\varphi_1) = 2I_c \left| \cos\left(\frac{\pi \Phi}{\Phi_s}\right) \right|$$

MCG (심자도) & MEG (뇌자도)

Magneto-Cardio-Graphy (MCG)

Magneto-Encephalo-Graphy (MEG)

Scanning SQUID Microscope

e.x.) mapping twist angle of magic angle twisted bilayer graphene

[Nature 581, 47–52 (2020)]

Commercial product by Nocera

Non-invasive Circuit Failure Analysis

Shapiro step (1963)

Voltage standard "AC→DC"

Josephson Voltage Pulse

Generation of rapid and precise voltage pulse of ~1 ps

JAWS & RSFQ

Josephson Arbitrary Waveform Synthesizer (JAWS)

Rapid single flux quantum (RSFQ)

- Digital logic device using Josephson pulse instead of 0/5 V TTL
- Data encoding, processing, transmitting with 1ps pulse
 - \rightarrow Fast processing (100 GHz clock speed)
- Superconducting transmission line
 - \rightarrow Much less heating problem

RFSQ device

POSTECH

초전도 전자소자 응용 (2018.2.7 KRISS)

Van der Waals Material based Superconducting devices

Quantum Materials / Van der Waals Materials

vdW-based Josephson Junctions (1)

Exfoliated and transferred in air in < 1 hour

[N. Yabuki et al., Nat. Comm. 7, 10616 (2016)]

[C. Zhao et al., J. Phys. Chem. Lett. 2022, 13, 46, 10811 (2022)]

vdW-based SQUID

Demonstration of vdW-based SQUID device

[L. S. Farrar et al., Nano Lett. 21, 6725 (2021)]

electrochemical exfoliation of bulk TMDs to 2D SC

solvent protection prevents air degradation

[J. Li et al., Nat. Mater. 20, 181 (2021)]

Proximity Josephson Junction

In mesoscopic point of view,

In microscopic point of view,

Bohr-Sommerfeld quantization: $2\cos^{-1}\left(\frac{E}{\Lambda}\right) + k^{+}L + (-k^{-}L) \pm \phi = 2\pi n$

NbSe₂/Graphene/NbSe₂

π -Josephson junction

vdW-ferromagnetic Josephson junctions

Fabricated in a glovebox

Magnetic hysteresis in Fraunhofer pattern

[Linfeng Ai et al., Nat. Comm. 12, 6580 (2021)]

vdW-ferromagnetic Josephson junctions

[H. Idzuchi et al., Nat. Comm. 12, 5332 (2021)]

Twist-angle Tunable vdW Interfaces

MATBG-based Josephson Junction

[D. Rodan-Legrain et al., Nat. Nanotechnol. 16, 769 (2021)]

S

Bi-2212 Twisted Josephson Junction (1/2)

Micro-cleaving method (~) Elvacite stamp Top Bi-2212 Rotate 6 (u) 25 - V_c of IJJ T = 4.8 K20 1.5 nm $\propto |\cos(2\theta)|$ (mV) >° 2.2 nm = 0.062 15 30 75 twisted angle $\theta = 0^{\circ}$ 2 nm STEM image of interface [Jongyun Lee et al., Maximum coupling Minimum coupling Nano Lett. 21, 10469 (2021)] Supporting *d*-wave SC

Bi-2212 Twisted Josephson Junction (2/2)

90°

15.0 Å

[001] Half

6.6 Å Interface

Integrated Intensity (arb)

Supporting *d*-wave SC

To be updated

Topological Material based Josephson Junctions

To be updated

Superconducting Qubits & possible roles of vdW materials

Quantum LC Resonator

Josephson Inductance

Inductance describes voltage drop, *V*, induced by the change of current, dI/dt, $V = L \times (dI/dt)$.

For Josephson junction,

I changes in time

 $\rightarrow \varphi$ changes in time (DC Josephson relationship)

 \rightarrow *V* appears (AC Josephson relationship)

$$\frac{\partial I}{\partial \varphi} = I_c \cos \varphi, \qquad \longrightarrow \quad \frac{\partial I}{\partial t} = \frac{\partial I}{\partial \varphi} \frac{\partial \varphi}{\partial t} = I_c \cos \varphi \cdot \frac{2\pi}{\Phi_0} V, \qquad \longrightarrow \quad V = \frac{\Phi_0}{2\pi I_c \cos \varphi} \frac{\partial I}{\partial t} = L(\varphi) \frac{\partial I}{\partial t}$$

$$\boxed{\text{Josephson inductance}} \quad L(\varphi) = \frac{\Phi_0}{2\pi I_c \cos \varphi} = \frac{L_J}{\cos \varphi}. \qquad L_J = L(0) = \frac{\Phi_0}{2\pi I_c}$$

Josephson junction is a 'quantum' nonlinear inductor.

Anharmonic LC resonator

Shunting Capacitor

To minimize effect charge noise, E_C was decreased by adding big capacitor.

Coplanar Waveguide (CPW) coupled to Transmon

Air Column Resonance (기주공명)

Flux control of Transmon Frequency

Qubit-Resonator Interaction

Qubit and resonator are capacitively coupled.

 $\hat{H}_{int} = \hbar g \left(a_r \hat{\sigma}_+ + a_r^{\dagger} \hat{\sigma}_- \right)$ Jaynes-Cummings interaction Increase resonator state

1 a
-2σ
-48
 + -

Connections to External Circuitry

Google version

Two Level System & State-of-art Transmon Qubit

Applications of van der Waals Materials for Superconducting Quantum Devices [A. Antony, PhD Thesis]

Transmon qubit made with α -Ta film on Sapphire substrate

• Energy relaxation time $T_1 \sim 500 \ \mu s$

[A.P. M. Place et al., Nat. Comm. 12, 1779 (2021)] [C. Wang et al., npj Quantum Information 8, 3 (2022)]

POSTELH

Al/InAs/Al Gatemon Qubit

Al is epitaxially grown on InAs nanowire.

- Energy relaxation time $T_1 \sim 0.8 \ \mu s$
- Dephasing time $T_2^* \sim 1 \, \mu s$

Semiconductor-Nanowire-Based Superconducting Qubit [T. W. Larsen et al., PRL 115, 127001 (2015)]

Graphene-based Gatemon Qubit

12

10

8

-2

f_{qb} (GHz)

hBN-based Capacitor for Transmon Qubit (1/2)

hBN-based Capacitor for Transmon Qubit (2/2)

Energy relaxation time T₁~1.1 μs
Dephasing time T₂^{*}~1.7 μs

Reducing footprint of transmon qubit by 1,000 times

Miniaturizing Transmon Qubits Using van der Waals Materials [A. Antony et al., Nano Lett. 21, 10122 (2021)]

Superconducting Sensor

Ref: Superconducting photon detectors, doi.org/10.1080/00107514.2022.2043596

X/γ-Ray

Medical X-ray imaging

Gamma ray sky

- in **X/γ-ray** range
 - Medical imaging
 - Material science
 - Astronomy science

Material Science suing synchrotrons

Superconducting Tunnel Junction (STJ)

Transition Edge Sensor (TES)

[Operation principle]

- Photon is absorbed \rightarrow Heats up SC \rightarrow resistance changes \rightarrow current changes (voltage-biased) Magaurad by SOLUT
 - \rightarrow Measured by SQUID

normal

TES covers THz ~ X-ray

[Photon number resolving] (Photon number) ∝ (Height of current pulse)

[Proc SPIE 7681, 71–80 (2010)] [IEEE Trans. Appl. Supercond. 21, 188–191 (2011)]

Infra-red

Infrared camera

Optical cable

- in IR range
 - optical quantum communication
 - quantum key distribution

Superconducting Nanowire Single Photon Detector (SNSPD)

[Operation principle]

Current biased (I_b) right below I_c

- \rightarrow Photon is absorbed
- \rightarrow Heats up SC
- $\rightarrow I_b$ exceeds I_c
- → Generates voltage pulse

Jitter time ~ a few *ps*

SNSPD embedded in optical cavity

[Opt. Exp. 23, 17301-17308 (2015)]

- SNSPD is widely used for
 - long-distance quantum key distribution in optical fiber
 - quantum networks with remotely entangled qubits
 - receivers for space-to-ground classical communications
 - NASA Deep Space Optical Communications (DSOC) mission
 - scalable platform for optical quantum computing
 - optical neuromorphic computing
 - low mass/energy Dark Matter searches

 Various SCs are used depending on purpose.
 e.g.) NbN, NbTiN, TaN, MoN, WSi, MoSi, MgB₂, YBCO, BSCCO, NbSe₂, etc.

Microwave

- in GHz range
 - remote entanglement of superconducting qubits
 - high-fidelity quantum measurements
 - microwave quantum illumination

Microwave Kinetic Inductance Detector (MKID)

Kinetic inductance is due to inertial mass of charge carrier in AC electric field.

 $F = m \times (dv/dt) \quad \bigstar$

$$V = L_K \times (dI/dt)$$

$$L_K = \frac{m_e}{2n_s e^2} \frac{l}{A}$$

Graphene-based Josephson Junction Bolometer/SPD

Exploit graphene's *extremely small electronic heat capacity* for detecting microwave photons

To be updated

