Interesting fusion reactions

in superheavy region

J.Hong, G.G.Adamian, N.V.Antonenko,

P.Jachimowicz, M.Kowal

What interesting experiments can still be done with ⁴⁸Ca beams and actinide targets?

1. Low energies, explore **1n** and **2n** evap. channels - new isotopes of SHN

2. High energies, study xn evaporation channels with x > 4

3. Production of new isotopes in the evaporation channels with the emission of a charged particle (alpha particle, proton) - new isotopes of SHN

Within the dinuclear system model we analysed the production of SHN in various actinide-based complete fusion reactions with ⁴⁸Ca.

Predictions of the properties of heaviest nuclei are based on the Macro-Micro Model:

Mass Table by P.Jachimowicz, M.Kowal, J.Skalski, At. Data Nucl. Data Tables 138 (2021) 101393

Dynamics of fusion in the dinuclear

system model

Evaporation residue cross section for the production of superheavy nuclei:

$$\sigma_{ER}^{s}(E_{c.m.}) = \sum_{J} \sigma_{c}(E_{c.m.}, J) P_{CN}(E_{c.m.}, J) W_{sur}^{s}(E_{c.m.}, J)$$

Energies of the maximum of cross section in 1n-,2nchannels are considerably smaller than the Coulomb barrier height for the sphere-side orientation plus Q-value: $V_b + Q$.

The larger the value of $V_b + Q$, the smaller the cross sections are for 1n-,2n-channels

A weak drop of the cross section is due to

1. the interplay of fusion and survival probabilities

2. a weak change of the difference between the fission barrier height and neutron binding energy at 5-9 steps of n-evaporation

 $\sigma_{tot}(E_{\rm c.m.}) = \sum \sigma_{xn}(E_{\rm c.m.})$

-- Imploying the reactions in 1n-,2nchannels, one can directly produce heaviest isotopes closer to the centre of "island of stability": ^{284,285}Cn, ^{283,284}Nh, ²⁹⁴Lv, ²⁹⁵Ts, ²⁹⁵⁻²⁹⁷Og

-- Cross sections of almost all of SHN in xnchannels are comparable or even larger than those in the charged particle evap.-n channels, 1n: 0.5fb-0.1pb ; 2n: 30fb-1pb -- The decline of the cross section at the transition from 5n to 9n channel is relatively

weak. One can produce SHN with Z=114-117 in 5n-, 6n-channels

- The charged evap. channels allow us to
- obtain an access to the isotopes which are
- unreachable in xn-channels due to the lack
- of proper projectile-target combinations

The charged evap. channels allow us to increase the mass of nuclei with Z=114,115,117 by 1 unit with respect to xn-channels.

4. Isthmus connecting mainland and island of stability of SHN

<u>The dependence of cross section on Z from Hs</u> to Lv has a minimum in the Ds nucleus

5. Hot & cold fusion reactions leading to the same SH evaporation residue

Cross section in ${}^{48}Ca+{}^{233}U->{}^{277}Cn+4n$ is comparable to one in ${}^{70}Zn+{}^{208}Pb->{}^{277}Cn+1n$, in which is 0.5 pb

$$\frac{P_{\rm CN}(4n)}{P_{\rm CN}(1n)} \approx \frac{W_{1n}}{W_{4n}} \approx 10^4$$

For the hot fusion reaction ${}^{48}Ca+{}^{239}Pu \rightarrow {}^{283}Fl+4n$ and cold fusion reaction ${}^{76}\text{Ge} + {}^{208}\text{Pb} \rightarrow {}^{283}\text{Fl} + 1n$, we also obtain the close production cross sections of the ²⁸³Fl isotope. Using the measured cross section $\sigma_{3n} = 0.23^{+0.59}_{-0.20}$ pb [13, 14] and the theoretical ratio $\sigma_{3n}/\sigma_{4n} = 2.3$ for the ⁴⁸Ca+²³⁹Pu reaction, we estimate the production cross section as $0.1^{+0.26}_{-0.00}$ pb in the 4*n*-evaporation channel which is close to the cross section calculated for the ${}^{76}\text{Ge} + {}^{208}\text{Pb} \rightarrow {}^{283}\text{Fl} + 1n$ reaction.

Theory expects remarkable experimental results in the near future