Studies of light exotic nuclei with radioactive beams at FLNR, JINR

E. Yu. Nikolskii^{1,2} (on behalf of ACCULINNA group)

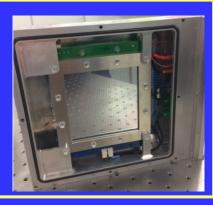
¹ Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions

² National Research Center "Kurchatov Institute"

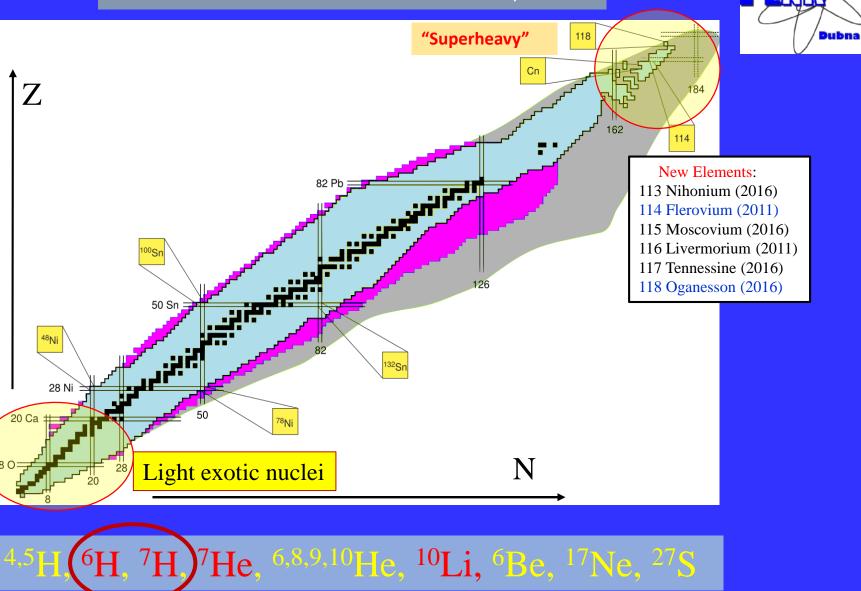
COLLABORATION:

National Research Nuclear University "MEPhI", 115409 Moscow, Russia Dubna State University, 141982 Dubna, Russia Heavy Ion Laboratory, University of Warsaw, 02-093 Warsaw, Poland Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119991 Moscow, Russia GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Giessen, Germany Laboratory of Information Technologies, JINR, 141980 Dubna, Russia Institute of Nuclear Physics, 050032 Almaty, Kazakhstan Nuclear Research Institute, 670000 Dalat, Vietnam Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059 Krakow, Poland Institute of Nuclear Physics PAN, Radzikowskiego 152, 31342 Kraków, Poland Department of Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden

Meat restaurant in Daejeon. Delicious!!!


Detector PPAC, 3 of them are in Dubna now

Korea University – JINR MOU Ceremony 2019


OUTLINE:

- Physics motivation. Light exotic nuclei near and beyond nucleon drip lines
- Dubna accelerator complex at Flerov Laboratory of Nuclear Reactions, JINR
 - ACCULINNA fragment separator layout
 - Gaseous cryogenic targets, including unique tritium target
- Short overview of experiments at ACCULINNA fragment separator
 - Elastic scattering (⁶He+⁴He). Looking on 2n-transfer
 - Study of ⁶He nucleus structure by QFS reaction ⁴He(⁶He, $\alpha\alpha$)2n
 - Search for ⁵H resonances by p(⁶He,pp)⁵H, d(⁶He,³He)⁵H and t(t,p)⁵H reactions
 - Correlation measurements to study ⁹He and ¹⁰He systems with ⁸He beam

New fragment separator ACCULINNA-2 at FLNR, JINR. Experimental setup.

- Calibration reactions ²H(¹⁰Be,³He)⁹Li and ²H(¹⁰Be,⁴He)⁸Li with ¹⁰Be beam
- Study of the ⁷H system via ²H(⁸He, ³He)⁷H \rightarrow t + 4n. Two Runs
- Satellite study of the ⁶H system in the reaction ${}^{2}H({}^{8}He,{}^{4}He){}^{6}H \rightarrow t + 3n$
- Looking ahead
- Summary

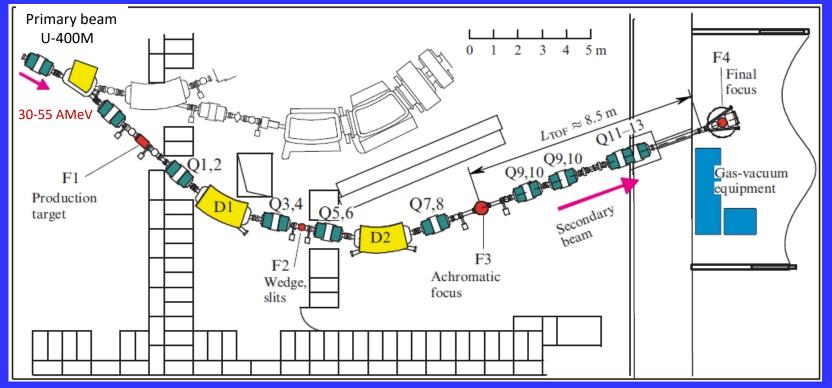
Main areas of interest at FLNR, JINR

DUBNA ACCELERATOR COMPLEX Dubna FLEROV LABORATORY OF NUCLEAR REACTIONS DC-280 U-400 U-400M IC-100 **Superheavy elements Light exotic Applied research Nuclear reactions** Montage nuclei New experimental hall hall DC-140 NanoLab DRIBs gallery MT-25 Microtron . **Setups:** Setups: Setups: SHELS **ACCULINNA-2 DGFRS-2** MAVR **COMBAS** GRAND

DC-280

U-400

CORSET



MASHA

ACCULINNA fragment separator (since 1996)

http://aculina.jinr.ru/

[Rodin A.M. et al. Nucl. Instrum. Meth. Phys. Res. **B 204** 114 (2003)]

⁶He (~ 10^6 s^{-1}) and ⁸He (~ 10^4 s^{-1}) secondary beams at ~ 25 AMeV ³H beam (3 x 10^7 s^{-1}) at 58 MeV

- Elastic scattering (⁶He+⁴He) & (⁸He+⁴He). Looking on 2n & 4n transfers at backward angles
- Study of ⁶He nucleus structure by QFS reaction on ⁴He target
- Search for ⁵H resonances by p(⁶He,pp)⁵H, d(⁶He,³He)⁵H and t(t,p)⁵H reactions
- Correlation measurements to study ⁹He and ¹⁰He systems with ⁸He beam

Unique tritium (³H) gas/liquid target at ACCULINNA

A.A. Yukhimchuk et al., NIM A 513 (2003) 439

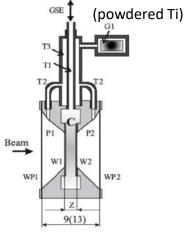
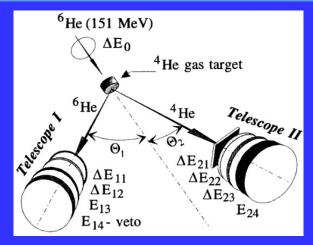
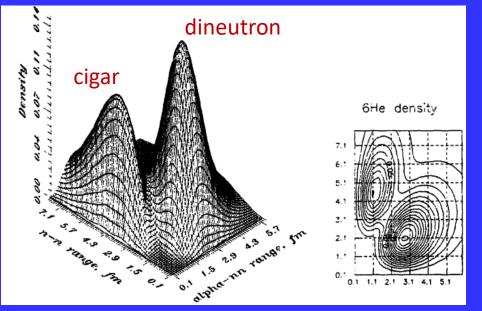
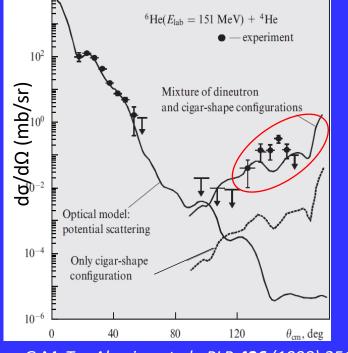



Fig. 2. Schematic drawing of the target. Denoted in the drawing are: C-target cell; W1, W2-cell windows; GSE (tube T1)-gas supply/evacuation path; P1, P2-protection barriers supplied with windows (WP1, WP2) and connected with the getter G1 through the tubes T1, T2 and T3.

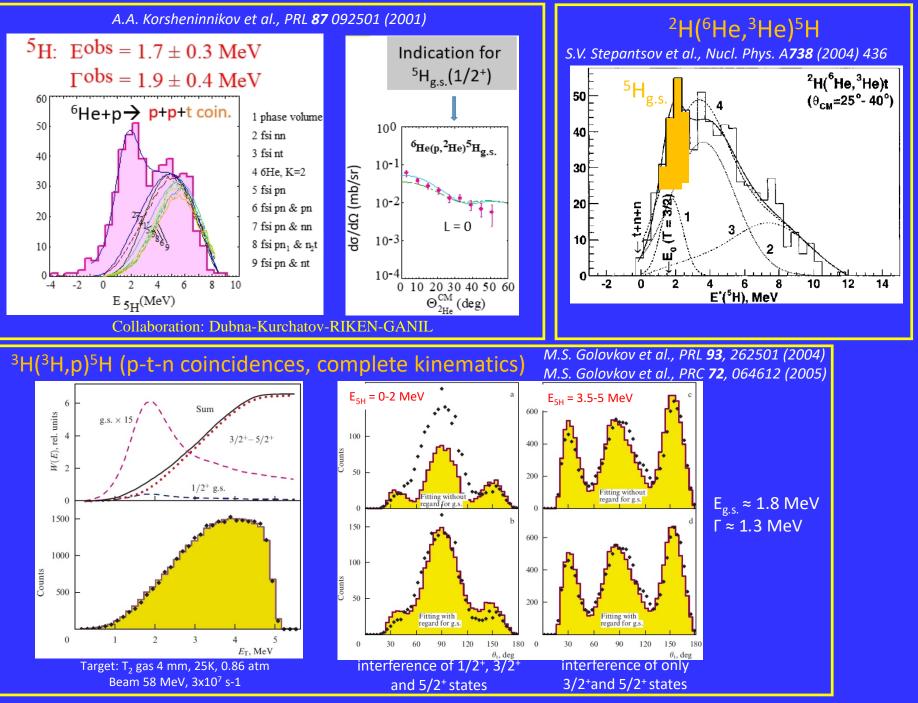

<u>Gas:</u> φ=25 mm, d=3÷6 mm, T=26 K, P=0.92 atm, 3*10²⁰ Atoms/cm²

<u>Liquid:</u> φ=20 mm, d=0.4÷0.8 mm, w=2x8.4 μ stainless steel, 1.1*10²¹ Atoms/cm² I ≤ 960 Ci (3.54*10¹³ Bq)

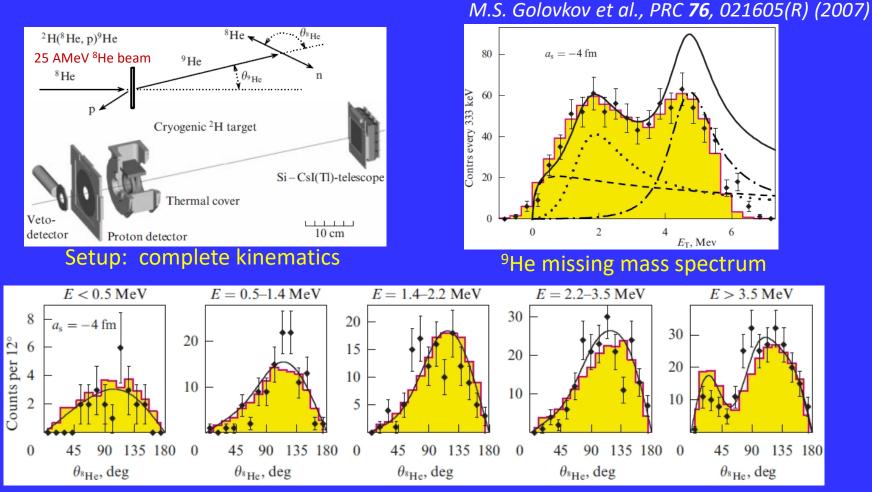

Dineutron structure of the ⁶He nucleus with neutron halo in the ⁶He+⁴He elastic scattering

Spatial structure of ⁶He nucleus (HH-theoretical calculations)

G.M. Ter-Akopian et al., PLB 426 (1998) 251–256

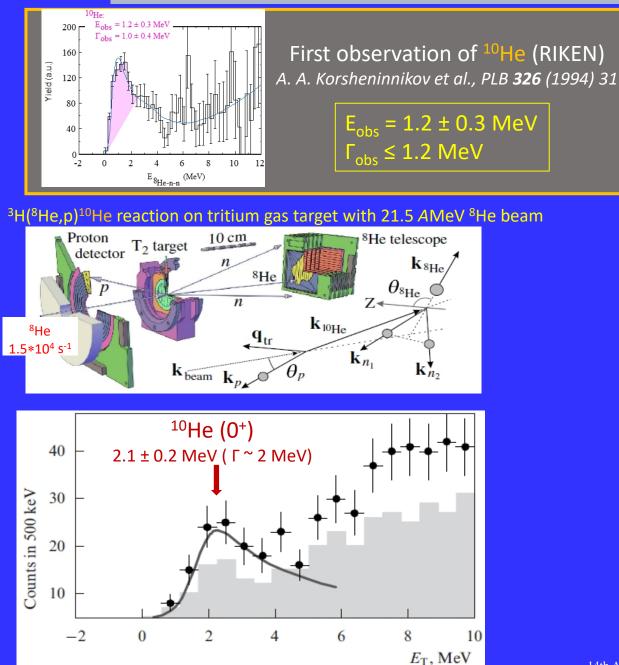

B.V. Danilin et al., Sov. J. Nucl. Phys. 48 766 (1988); Yad. Fiz. 48 1208 (1988)

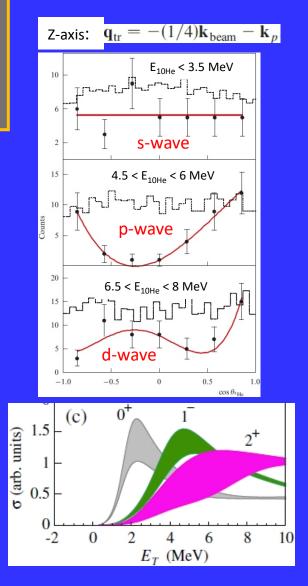
Study of the ⁶He structure in the reaction of quasifree scattering ⁴He(⁶He, 2α)



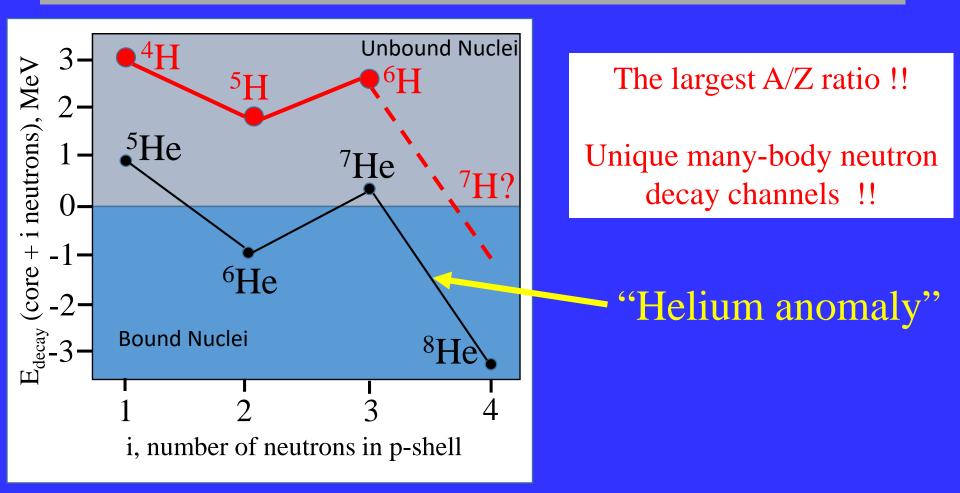
S.I. Sidorchuk et al., Nucl. Phys. A840 (2010) 1

14th APCTP-BLTP JINR Joint Workshop, 9-14 July 2023, Pohang, Korea


Unambiguous spectrum identification of ⁹He in the d(⁸He,p)⁹He reaction


Angular distributions of ⁸He in CM of ⁹He

Conclusions: the lowest resonant state of ⁹He is found at 2.0 ± 0.2 MeV with a width of ~2 MeV and is identified as 1/2-. Angular correlations are uniquely explained by the interference of the 1/2- resonance with a virtual 1/2+ state (a limit a > -20 fm is obtained for the scattering length), and with a 5/2+ resonance at energy ≥ 4.2 MeV.


Structure of ¹⁰He low-lying states uncovered by correlations

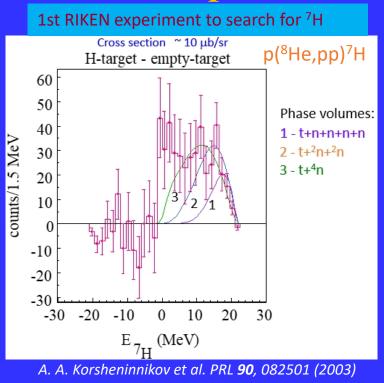
S.I. Sidorchuk et al., PRL **108**, 202502 (2012)

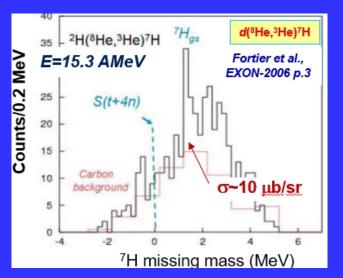
EXOTIC NUCLEI: Superheavy hydrogen isotopes ^{6,7}H

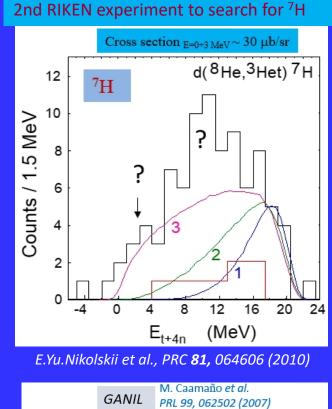
<u>Theoretical calculations of ⁷H(t+4n) energy:</u>

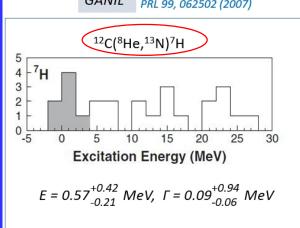
E = 0.87 MeV (7-body hyperspherical functions) N.K. Timofeyuk, PRC 65 064306 (2002)

E = **3 MeV** (7-body hyperspherical functions, p.s.e.) A.A. Korsheninnikov et al., PRL 90 082501 (2003)

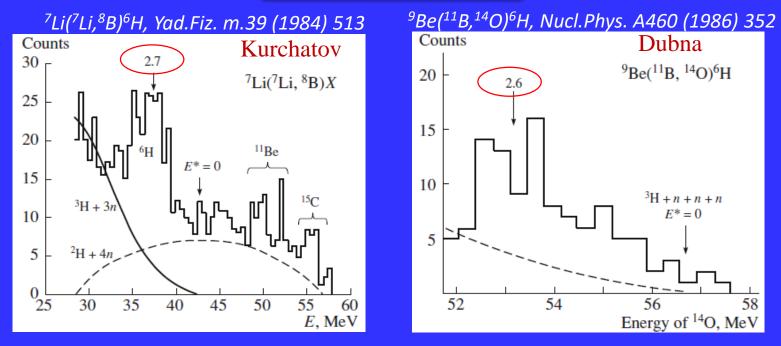

E = **7 MeV** (AMD) S. Aoyama and N. Itogaki, NP A738 362 (2004)

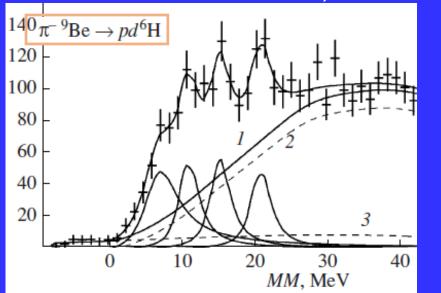

<u>Estimation of width of ⁷H:</u> $E \leq 3 \text{ MeV} \Leftrightarrow \Gamma \leq 1 \text{ MeV}$ M.S. Golovkov et al., PL B588 163 (2004)

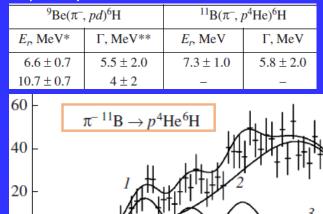

New Result:


 $E \approx$ **9.5 MeV**, Γ = **3.5 MeV** (Variational Gaussian Expansion Approach) *E. Hiyama et al.*, PLB **833** 137367 (2022)

Experiments to search for ⁷H states




Experiment	LAB	Energy (AMeV)	Result	Cross section (μb/sr)
p(⁸ He,pp)	RIKEN	61	Very sharp increase from threshold No resonance parameters	~ 30 (E ≤ 3 MeV)
d(⁸ He, ³ He)	GANIL	15.3	Structure near 2 MeV No resonance parameters	—
d(⁸ He, ³ He)	Dubna	25	Few events No resonance parameters	≤ 30 (E ≤ 3 MeV)
¹² C(⁸ He, ¹³ N)	GANIL	15.3	7 events E = $0.57^{+0.42}_{-0.21}$, Γ = $0.09^{+0.94}_{-0.06}$ MeV	40.1 ^{+58.0} -30.6
d(⁸ He, ³ He)	RIKEN new	42	Abnormal shape near threshold, shoulder at ~ 2 MeV No resonance parameters	~ 30 (E ≤ 3 MeV)

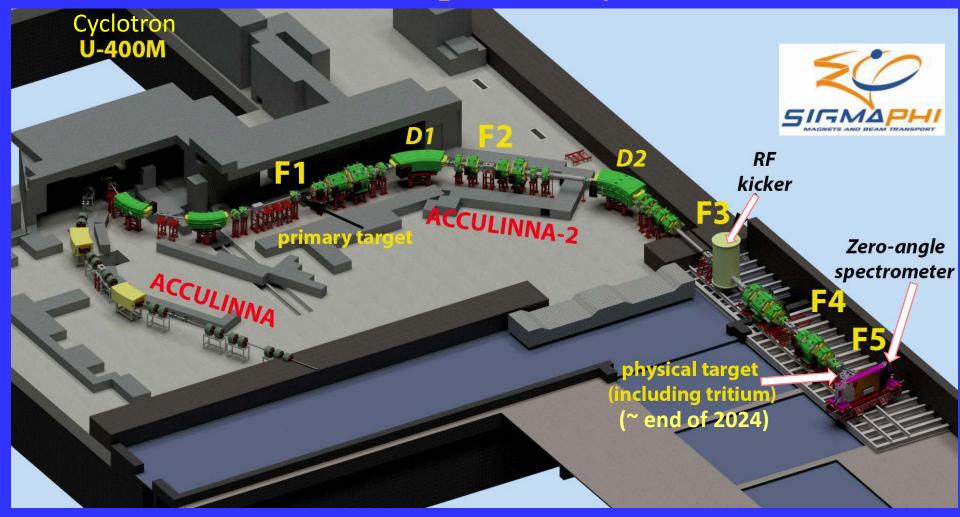

⁶H search history

Phys. Part. Nucl. 40 (1990) 558

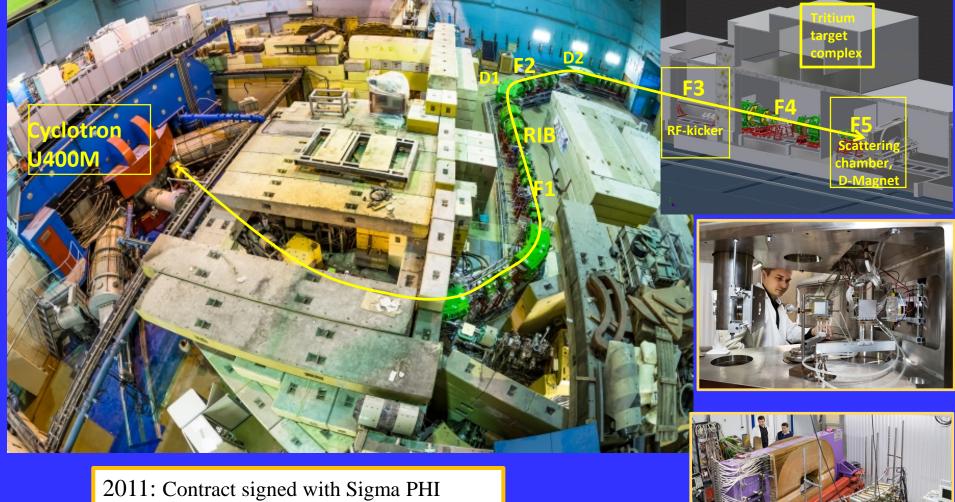
0世 -10

14th APCTP-BLTP JINR Joint Workshop, 9-14 July 2023, Pohang, Korea

MM, MeV

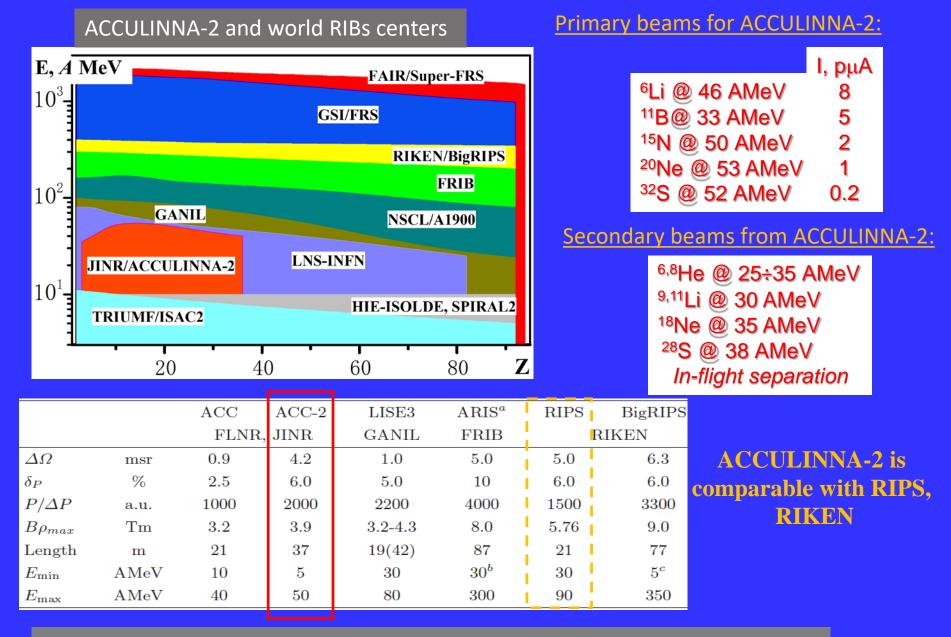

20

30

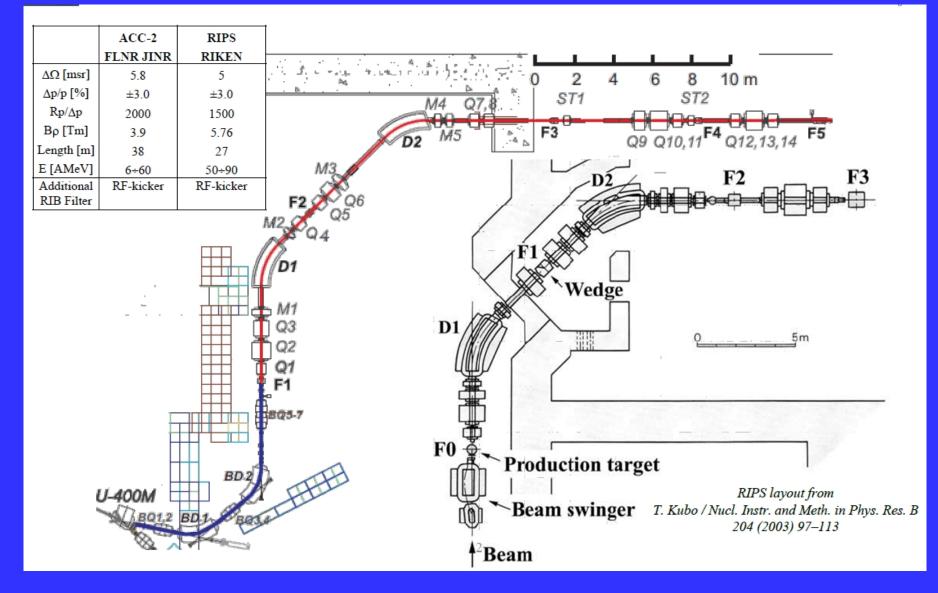

10

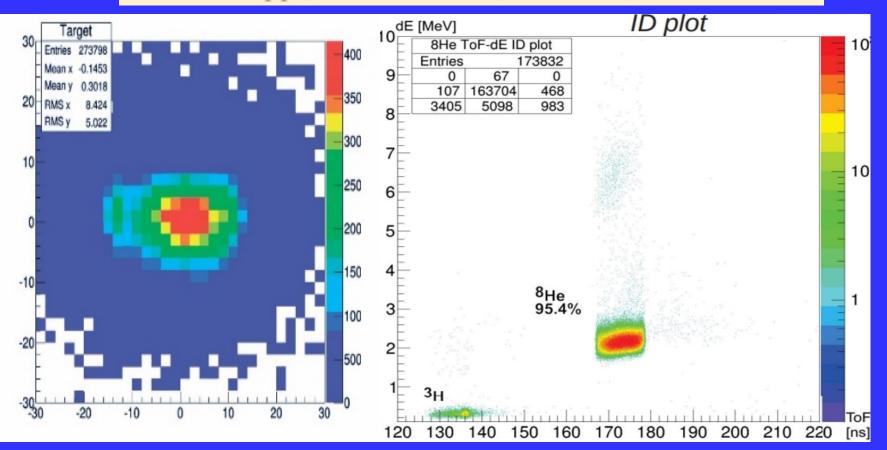
0

ACCULINNA-2 separator layout (since 2017)

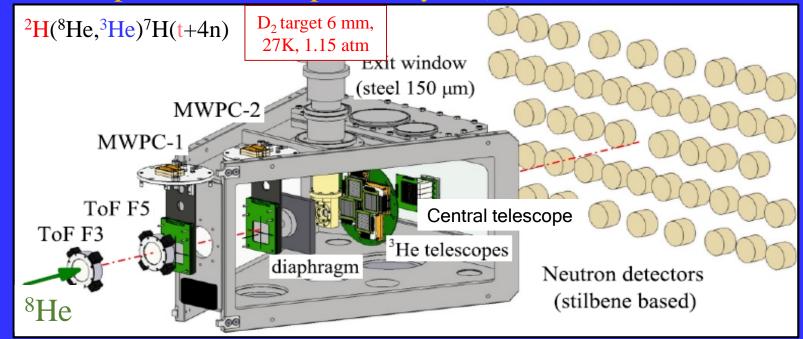


A.S. Fomichev et al., Eur. Phys. J. A (2018) 54: 97

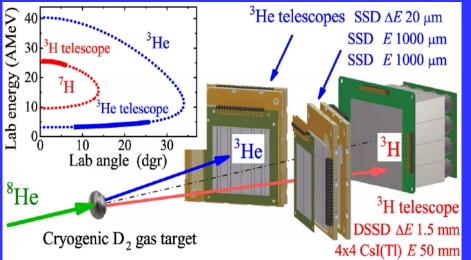

2016-17: Full commissioning + Beam 2018-2019: First experiments 2020-2023: Upgrade U400M cyclotron

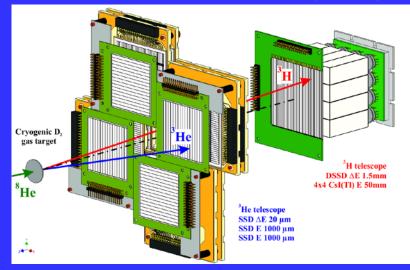

Intensities of secondary beams ~ 15-25 times higher than ACCULNNA !!

ACCULINNA-2 layout compared to RIPS (RIKEN)

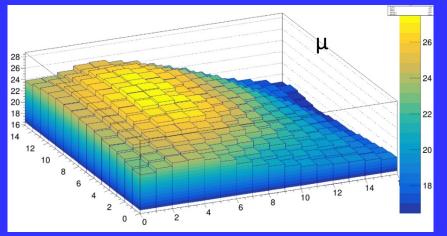


⁸He beam


 $I \sim 3*10^5$ pps, $E \sim 26$ AMeV, P > 90%, Ø ~17 mm

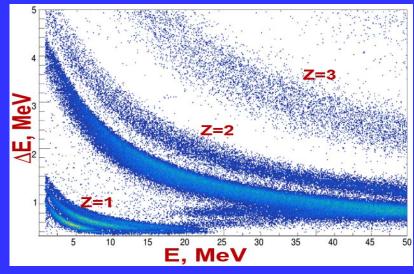

Experimental setup to study ²H(⁸He,³He)⁷H reaction

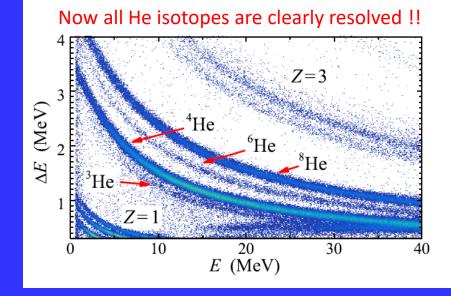
EXP 1, 2018 2 weeks, 107 ⁷H (³He+t) events



EXP 2, 2019 3 weeks, 404 ⁷H (³He+t) events

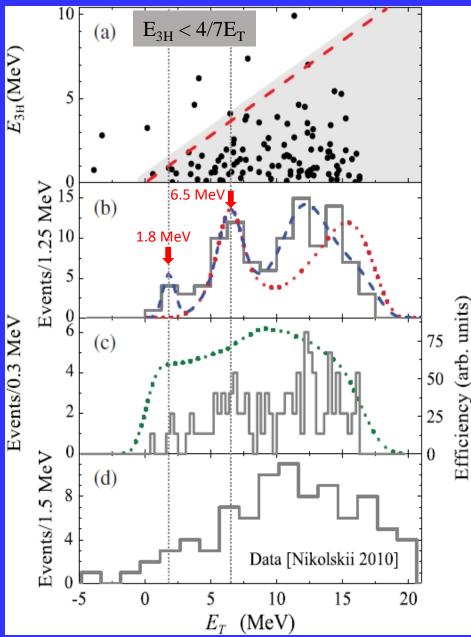
Identification of low-energy ³He is a difficult task!

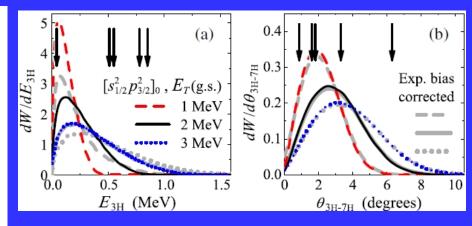

Measured thickness map of one of 20-um detector


Identification in central telescope (¹⁰Be beam)

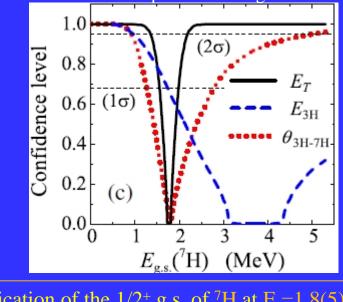
Particle ID w/o thickness correction of 20-um detector

Particle ID after thickness correction of 20-um detector




Test reactions ²H(¹⁰Be,³He)⁹Li and ²H(¹⁰Be,⁴He)⁸Li with 42 AMeV ¹⁰Be beam

E. Yu. Nikolskii et al., NIMB **541** (2023) 121 Data for the reference reactions GE 9/2 6430 40 KeV 5380 0.6 MeV ²H(¹⁰Be,³He)⁹Li and ²H(¹⁰Be,⁴He)⁸Li: 5400 ≈ 650 KeV n ≈ 100 % 4301 88 KeV n ≤ 100 % Sn..... ⁸Li level scheme * energy calibration and resolution for the (1/2-)2691 2691 missing mass spectra; 3210 ≈ 1000 KeV n : 100 % ** detector efficiency: 0.0178.3 MS β-: 100 % 3/2 9 3^{∟i}6 980.8 8.2 FS IT : 100 9 β-: 100 %, βα: 100 % 402.25 MeV SLis 500 ⁹Li(g.s.) Events / 400 keV 35 500 400 Counts / 0.5 MeV 30 300 (with 7Li coincidence Events / 400 keV 400 200 in central telescope) 25 100300 20 -î 2 -3 0 3 -2 -1 -4 $E^*(^9\text{Li})$ (MeV) 15 200 ⁹Li(2.69) 10 100 5 0 0 -5 5 15 20 25 30 35 0 10 3 5 10 0 1 2 4 6 7 8 9 $E^*(^{9}\text{Li})$ (MeV) E*(⁸Li) (MeV)

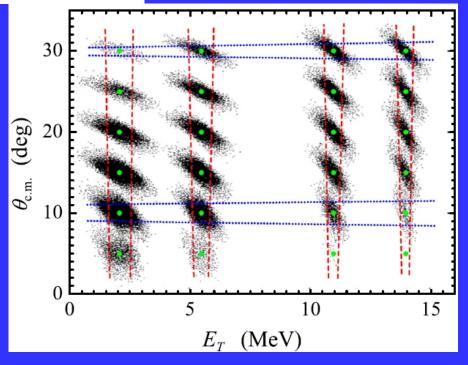

Detailed data of ⁷H of the 1st Run

[A.A. Bezbakh et al., PRL 124, 022502 (2020)]

MC likelihood functions of confidence level for the position of ⁷Hg.s.

Indication of the $1/2^+$ g.s. of ⁷H at E =1.8(5) MeV with cs ~25 µb/sr at θ cm ~ 17°–27°

Conclusion after 1st Run:


(i) For the first time, the ⁷H excited state is observed at $E_T = 6.5(5)$ MeV with $\Gamma = 2.0(5)$ MeV. This state can be interpreted as the unresolved 5/2+ and 3/2+ doublet built upon the 2+ excitation of valence neutrons, or one of the doublet states.

(ii) Indications for the ⁷Hg.s. at $E_T = 1.8(5)$ MeV are found in the measured energy and angular distributions. The cross section obtained for the presumed ⁷Hg.s. populated in the ⁸He(d,³He)⁷H reaction in the $\Theta_{CM} = 7^{\circ} - 27^{\circ}$ is $\approx 25 \text{ µb/sr}$. This corresponds to a weak population of the g.s. with experimental SF ~ 0.1, which clarifies why the previous searches for the ⁷Hg.s. required so much time and efforts without bringing reliable assignments of such a remote isotope.

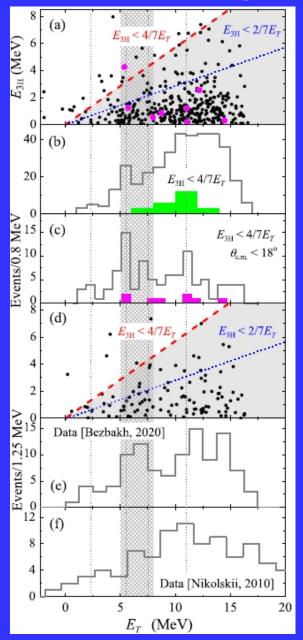
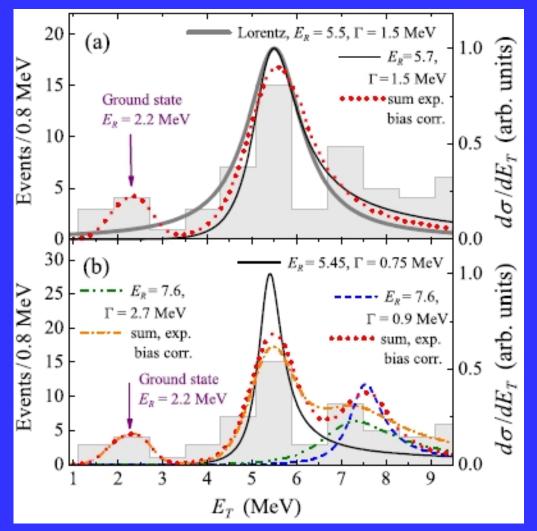
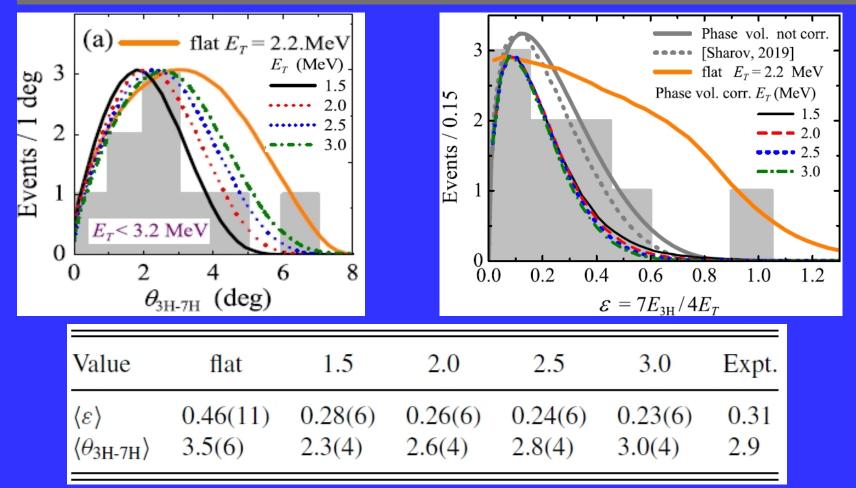

Monte Carlo calculations of the ⁷H missing mass energy resolution over Θ_{CM} and ⁷H energy

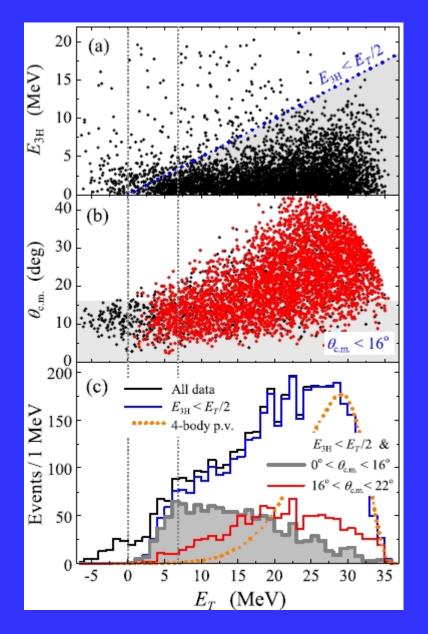
TABLE I. Experimental resolution in the second experiment as a function of the ⁷H MM energy and center-of-mass angle $\theta_{c.m.}$ based on the MC simulations Fig. 8. The first and second values in each cell are the FWHM energy and the angular resolutions given in MeV and degrees, respectively.


E_T	2.2 N	ſeV	5.5 N	/leV	11 N	leV	14 N	leV
10°	0.95	2.2	0.73	2.3	0.48	2.5	0.38	2.8
20°	1.10	1.6	0.93	1.8	0.64	2.2	0.52	2.6
30°	1.13	1.2	0.99	1.3	0.77	1.8	0.69	2.0

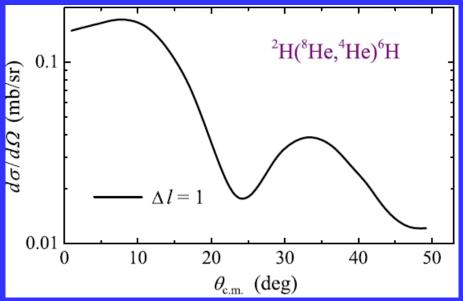

Detailed data of ⁷H of the 2nd Run [I. A. Muzalevskii et al, PRC **103**, 044313 (2021)]

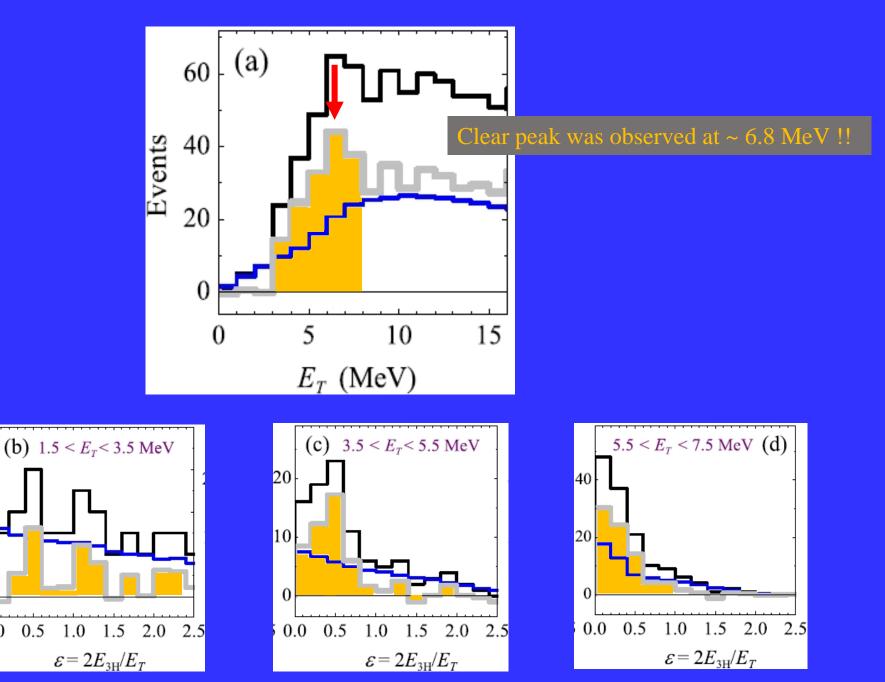
⁷H spectrum after $E_{3H} < 4/7E_T$ and $\Theta_{CM} < 18^{\circ}$ selections

Additional support for the position of ⁷Hg.s. at E = 2.2(5)MeV comes from the angular and energy distributions of tritons from the ⁷H decay for the events $E_T < 3.2$ MeV



The value ε is consistent with $E_T < 2.2$ MeV. The best fit to the experimental $<\theta_{3H}$ -⁷H> value is obtained at $E_T = 2.6(7)$ MeV. Both values are consistent with $E_T = 2.2(5)$ MeV inferred from the MM data.


Conclusion after 1st and 2nd experiments:

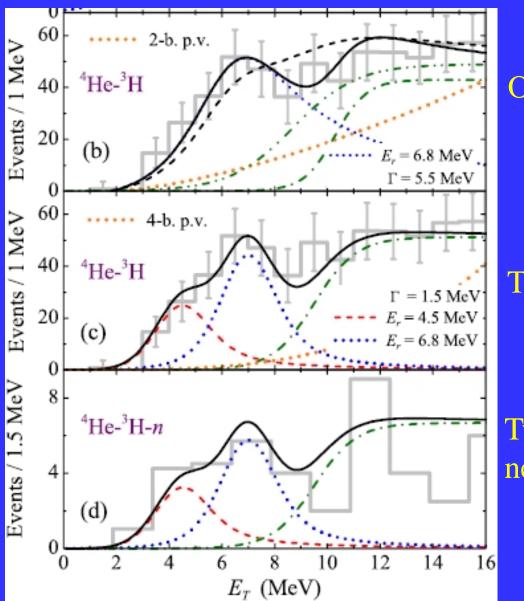

- 1. A solid experimental evidence is provided that two resonant states of ⁷H are located in its spectrum at 2.2(5) and 5.5(3) MeV relative to the ³H+4n decay threshold.
- 2. Based on the energy and angular distributions, obtained for the ²H(⁸He, ³He)⁷H reaction, the weakly populated 2.2(5)-MeV peak is ascribed to the ⁷H 1/2⁺ ground state.
- 3. There are indications that the resonant states at 7.5(3) and 11.0(3) MeV are present in the measured ⁷H spectrum.
- 4. It is highly plausible that the firmly ascertained 5.5(3)-MeV state is the 5/2⁺ member of the ⁷H excitation 5/2⁺-3/2⁺ doublet, built on the 2⁺ configuration of valence neutrons. The supposed 7.5-MeV state can be another member of this doublet, which could not be resolved in 1st Run.

Study of ⁶H system by measuring the ²H(⁸He,⁴He)⁶H \rightarrow t + 3n reaction

The $\Delta L = 1$ cross section for the ²H(⁸He, ⁴He)⁶H reaction obtained in FRESCO calculations

6

4


2

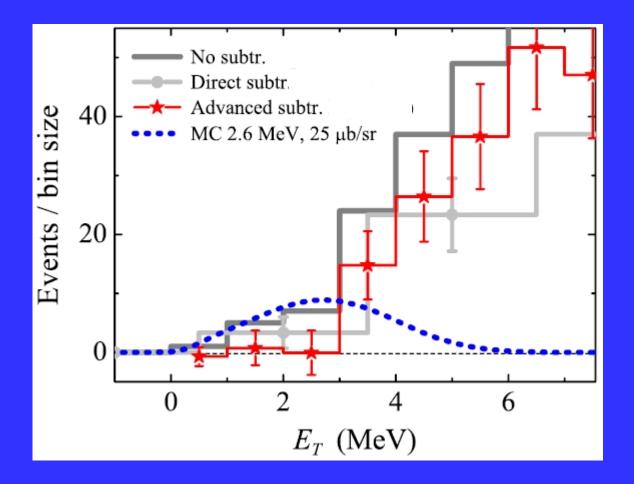
0

0.0

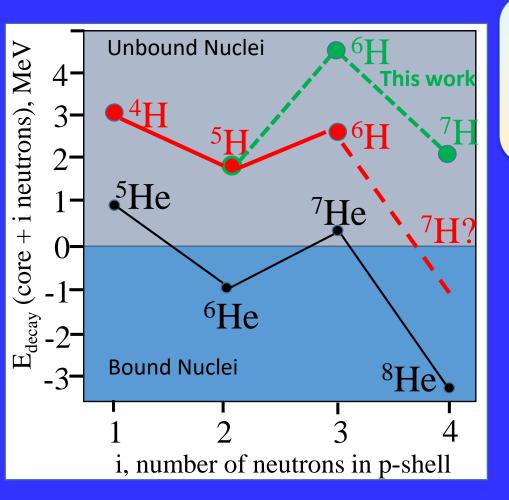
0.5

Final ⁶H spectra corrected for the experimental efficiency with cutoff $\Theta_{CM}\!<\!\!16^0$

$$\frac{d\sigma}{dE_T} \approx \frac{\Gamma(E_T)}{(E_r - E_T)^2 + \Gamma(E_T)^2/4},$$

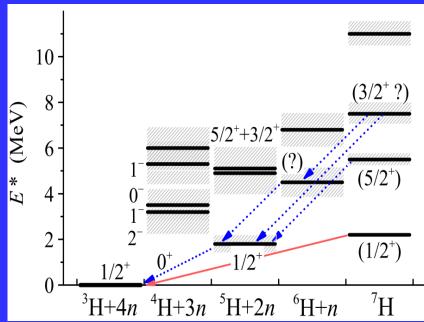

One state interpretation

Two states interpretation

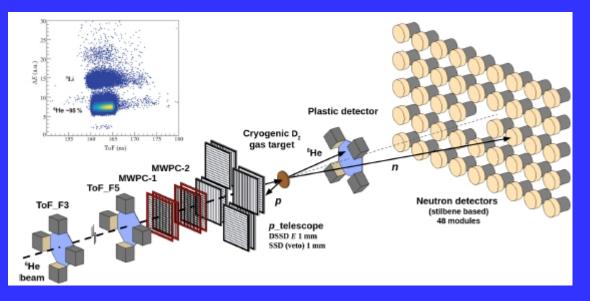

Two states interpretation with neutron coincidences

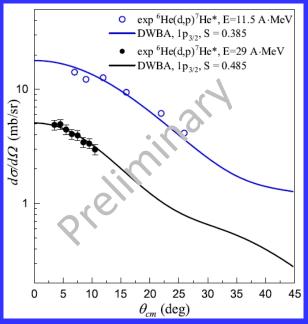
No indications for the ⁶H state at E ~ 2.7 MeV with cross section limit $d\sigma/d\Omega_{CM} \le 5 \mu b/sr$!!

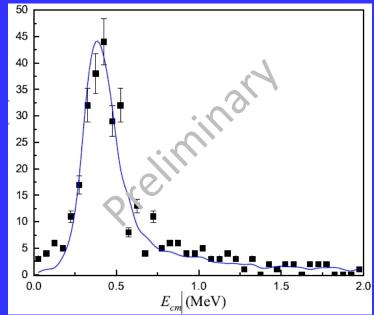
Instead, we observed the population cross section of $d\sigma/d\Omega_{CM} \approx 190 \ \mu b/sr$ for the 6.8 MeV broad state at angular range $5^0 < \Theta_{CM} < 16^0$



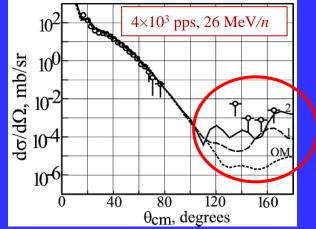
Hydrogen and helium chains: today status



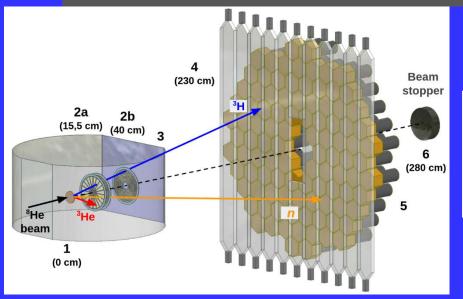

* New level schemes for chain ⁴H ÷ ⁷H


** The unique true *4n*-decay mechanism is proved to be realized for ⁷H. *This is the first such case found in the nuclide map.*

⁷He spectrum studied by the ⁶He(d,p)⁷He reaction



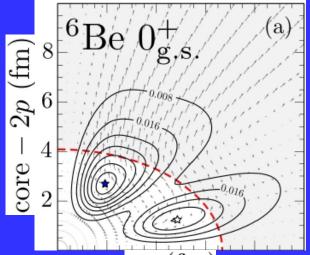
Going ahead...


Search for 4n transfer in the ⁸He+⁴He scattering

R. Wolski et al., Nucl. Phys. A 701 (2002) 29c

~ 5 counts per 10 days are expected for the ${}^{8}\text{He}+{}^{4}\text{He}$ elastic scattering at $d\sigma/d\Omega = 10^{-5}$ mb/sr in the θ cm range $150^{\circ} - 175^{\circ}$

Isobar-analogue states in ⁵H and ⁵He in the ⁶He+d collisions

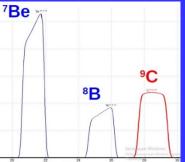

Invariant mass measurements D₂ target 1×10²¹ cm⁻² 85 counts per 10 days for ³He+t+2n events FWHM resolution of ~ 400 keV

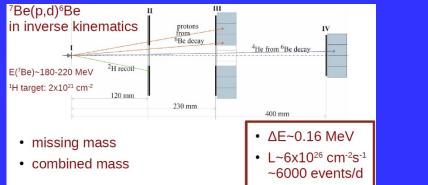
Going ahead... (2)

Light proton-rich nuclei ⁶Be, ⁷B, ⁸C studied by the (p,d) reaction

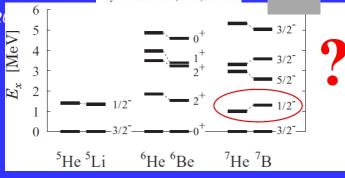
<u>⁰Be states</u>	<u><i>E_T</i> (MeV)</u>	Γ (MeV)	
-0^+_1	1.383 (1.370)	0.041 (0.092))
0^{+}_{2}	5.95	11.21	
1+	4.76	7.75	Exp
2^{+}_{1}	2.90 (3.04)	1.05 (1.16)	
2^{+}_{2}	4.63	5.67	

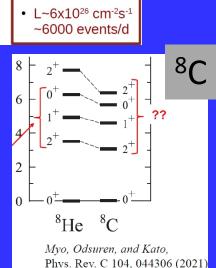
Myo and K. Kato, Phys. Rev. C 107 (2023) 014301.




pp (fm) S. M. Wang et al., PRC **99**, 054302 (20

Tuning ACCULINNA-2 for ⁷Be, ⁸B, ⁹C beams


- primary beam of ¹²C, 50 MeV/A, 2 pµA:
 - 7Be, ~27 MeV/A, 1.1e5 pps
 - 8B, ~32 MeV/A, 4.4e4 pps
 - °C, ~36 MeV/A, 6.8e4 pps
- All component available in one beam mixture


⁷B

T. Myo, Y. Kikichi and K. Kato, Phys. Rev. C **84** (2011) 064306

Summary

1. Effective methods for the study of light exotic nuclear systems near and beyond nucleon drip-line were developed in experiments at the ACCULINNA fragment separator, JINR FLNR.

New important results on the structure and level scheme of exotic nuclei as ⁶He, ⁵H, ⁹He, ¹⁰He were obtained. These techniques are based on intense radioactive beams (⁶He, ⁸He, ³H), unique targets (including tritium) and correlation methods especially efficient for direct reactions studies at intermediate energies.

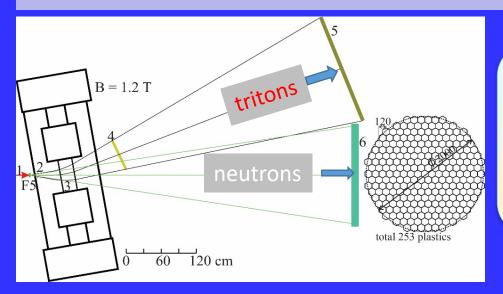
2. In two experiments at newly commissioned fragment separator ACCULINNA-2 a solid experimental evidence for two resonant states of ⁷H are located at 2.2(5) and 5.5(3) MeV relative to the ³H+4n decay threshold is provided. There are indications that the resonant states at 7.5(3) and 11.0(3) MeV. Based on the energy and angular distributions, obtained for the studied ²H(⁸He, ³He)⁷H reaction, the weakly populated 2.2(5)-MeV peak is ascribed to the ⁷H ground state. It is highly plausible that the 5.5(3)-MeV state is the $5/2^+$ member of the ⁷H excitation of $5/2^+ - 3/2^+$ doublet, built on the 2^+ configuration of valence neutrons. The supposed 7.5-MeV state can be another member of this doublet

3. The ⁶H spectrum was populated in the ²H(⁸He, ⁴He)⁶H transfer reaction. The broad bump in the ⁶H MM spectrum at E = 6.8(5) MeV with $\Gamma \sim 5.5$ MeV is reliably identified with the population cross section do/d $\Omega_{CM} \approx 190 \ \mu$ b/sr in the 5^o < Θ_{CM} < 16^o angular range.

4. No evidence for the $\approx 2.6-2.9$ MeV state in ⁶H was found, which was reported in 3 previous works. The cross section limit $d\sigma/d\Omega_{CM} \le 5 \mu b/sr$ is set for the population of possible states with E < 3.5 MeV. We suggest that the position of the ⁶H g.s. is not yet established and discussion of this issue should be continued.

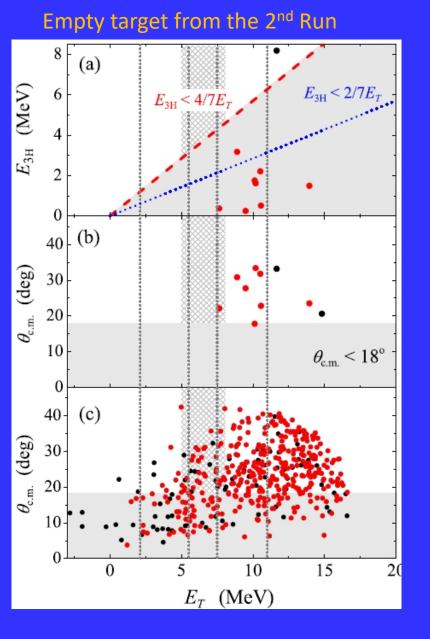
5. After U400M cyclotron modernization, the future planes of the possible experiments are discussed. Most likely that could be study of ⁸He+⁴He scattering, the detailed spectroscopy of ⁵H-⁵He, the further research of ⁶Be nucleus and search for isobar-analogue states in proton-rich nuclei ⁷B and ⁸C.

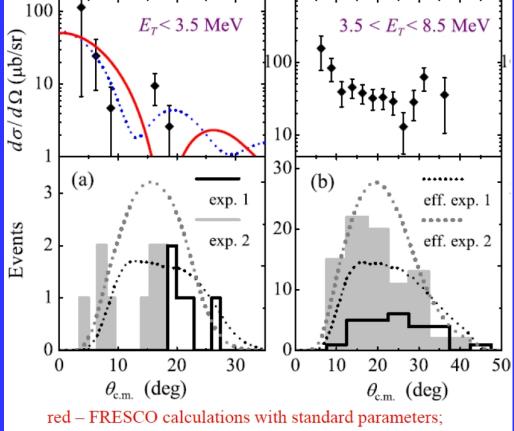
A. S. Fomichev, I. A. Muzalevskii, A. A. Bezbakh, E. Yu. Nikolskii, V. Chudoba, S. A. Krupko, S. G. Belogurov, D. Biare, E. M. Gazeeva, M.S. Golovkov, A. V. Gorshkov, L. V. Grigorenko, G. Kaminski, , D. A. Kostyleva, M. Yu. Kozlov, B. Mauyey, Yu. L. Parfenova, W. Piatek, A. M. Quynh, V. N. Schetinin, A. Serikov, S. I. Sidorchuk, P. G. Sharov, R. S. Slepnev, S. V. Stepantsov, A. Swiercz, P. Szymkiewicz, G. M. Ter-Akopian, R. Wolski, B. Zalewski


ACCULINNA-2 team

Thank you for your attention!

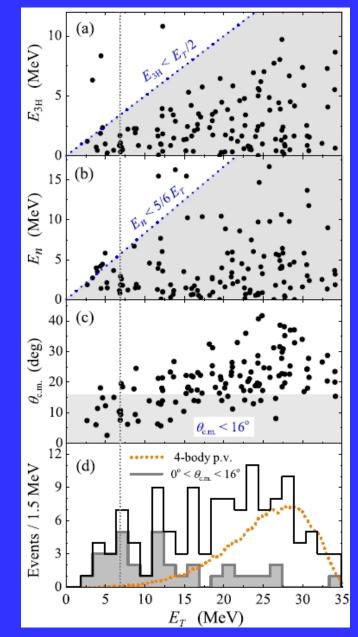
1. Tritium Target !! Liquid $T_2 \sim 3*10^{21} \text{ cm}^{-2}$

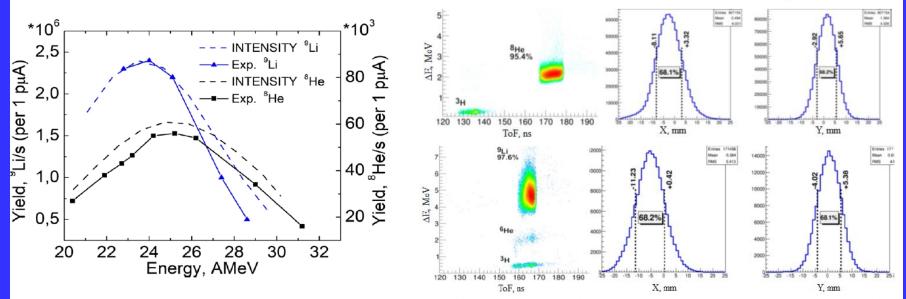

⁸He+T₂(liquid) \rightarrow ⁴He(stopped) + ⁷H(t+4n) invariant mass


Ground-state energy resolution ~400 keV Liquid T₂ ~3*10²¹ cm⁻² Intensity of ⁸He ~10⁵ 1/s Reaction cross section ~0.1 mb/sr Triton trigger eff. ~0.7 t+4n detection eff. ~0.015 ⁷H_{g.s.} counting rate: ~5 per day

2. $p(^{11}Li, p^4He)^7H ^{-11}Li - new$ "source" to make ⁷H

Quasi-free alpha knockout from ¹¹Li possibly has larger cross section ⁷H could have [s²p²] component of WF that already exist in ¹¹Li





blue – assuming the extreme peripheral transfer \rightarrow low cross section for the ⁷H_g.s.

4He+t+n coincidences

Characteristics of several RIBs at ACCULINNA-2 obtained in the first experiments

The observed basic characteristics for RIBs (intensity, purity, beam profiles in final focal plane) are in a good agreement with the technical specification and estimations.

lon	E, AMeV	Reaction	l, pps/pμA	P, %	X_Y, mm (FWHM)	∆p, ±%	Wedge Be, mm
⁶ He	29	¹¹ B(33.5 AMeV)+Be(1 mm)	2.2*10 ⁶	90.2	10_8	2.0	1.0
⁸ He	28		5.5*10 ⁴	95.4	9_7	3.25	1.0
۶Li	31		5.0*10 ⁵	97.6	12_9	2.0	1.0
¹⁰ Be	45	¹⁵ N (49.3 AMeV)+Be(1 mm)	2.3*10 ⁶	78.4	16_11	1.25	1.0
²⁶ P	28	³² S (52.7 AMeV)+Be (0.5 mm)	15	<0.5	18_12	0.75	0.5
²⁷ S	27	"	60	1	18_12	0.75	0.5

ACCULINNA-2 Parameters:

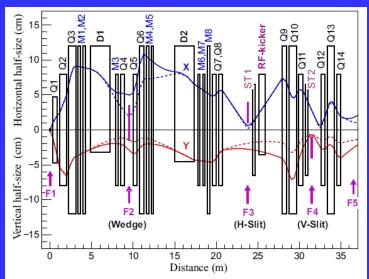


Fig. 4. Envelopes of the beam in horizontal (X) and vertical (Y) planes. F1 object slit is $2 \times 2 \text{ mm}^2$, capture angles are ± 30 and $\pm 35 \text{ mrad}$ in X and Y planes, respectively. Solid lines are for $\delta_P = \pm 2.5\%$ and dashed ones for $\delta_P = \pm 1.0\%$.

Table 4. Ion-optical	parameters of ACCULINNA-2	magnetic dipoles $D1$.	D2 and steering (correcting) magnets S	T1. ST2.

Value		Units	D1	D2	ST1, ST2
Bending direction			horizontal	horizontal	vertical
Туре			sector	sector	rectangular
Gap height	2h	cm	6.4	9.0	11.2
Bending mean radius	R	m	3.0	3.0	-
Bending field	$B_{\rm nom}$	Т	1.3	1.3	0.053
Length	L_{eff}	m	2.356	2.356	0.283
Working width	2w	cm	20	20	10
Bending angle	Φ	dgr	45	45	_
Entrance angle	$\tau_{\rm entr}$	dgr	0	0	0
Exit angle	$\tau_{\rm exit}$	dgr	0	20	0

Table 5. Ion-optical parameters of ACCULINNA-2 magnetic quadrupoles.

Value		units	Q1	Q^2	Q3, 10, 13	Q4, 5, 7, 8, 11, 12, 14	Q6, 9
Aperture	2r	cm	9.4	16	24	16	24
Length	L_{eff}	$^{\mathrm{cm}}$	54.3	87.1	85.9	47.6	51.8
Field gradient	$G_{\rm nom}$	T/m	9.2	7.2	7.2	9.8	6.4

Table 6. Ion-optical parameters of magnetic multipoles. They all have an effective length $L_{\rm eff} = 28.6\,{\rm cm}$.

Multipole	Aperture 2r, cm	Sextupole B''_{nom} , T/m ²	Octupole $B_{nom}^{\prime\prime\prime}$, T/m ³
M1, M2, M4, M5, M8	24	3.9	195
M3, M6, M7	16	39	

A.S. Fomichev et al., Eur. Phys. J. A (2018) 54: 97

$\begin{array}{ccccccc} {\rm Primary \ beam \ spot \ size} & {\rm F1} & 2\times 2 & {\rm mm}^2 \\ {\rm Momentum \ acceptance} & 6.0 & \% \\ \theta_{0x} \ {\rm angular \ acceptance} & 60 & {\rm mrad} \\ \theta_{0y} \ {\rm angular \ acceptance} & 70 & {\rm mrad} \\ {\rm X \ momentum \ dispersion} & {\rm F1} \rightarrow {\rm F2} & 2.0 & {\rm cm}/\% B\rho \\ \theta_x \ {\rm angul. \ mom. \ disper.} & - & 0.5 & {\rm mrad}/\% B\rho \\ \theta_x \ {\rm angulification} & - & -1.0 \\ {\rm Y \ magnification} & - & -7.4 \\ {\rm X \ momentum \ dispersion} & {\rm F2} \rightarrow {\rm F3} & 3.3 & {\rm cm}/\% B\rho \\ {\rm X \ magnification} & - & -1.7 \\ {\rm Y \ magnification} & - & -1.7 \\ {\rm Y \ magnification} & - & -2.0 \\ {\rm X \ magnification} & - & -2.0 \\ {\rm X \ magnification} & {\rm F1} \rightarrow {\rm F3} & 1.7 \\ {\rm Y \ magnification} & {\rm F1} \rightarrow {\rm F3} & 1.7 \\ {\rm Y \ magnification} & - & 5.0 \\ {\rm Length} & {\rm F1} \rightarrow {\rm F2} & 9.51 & {\rm m} \\ {\rm Length} & {\rm F2} \rightarrow {\rm F3} & 14.35 & {\rm m} \\ {\rm Length} & {\rm F3} \rightarrow {\rm F4} & 7.63 & {\rm m} \\ {\rm Length} & {\rm F3} \rightarrow {\rm F5} & 13.25 & {\rm m} \end{array}$	Table 3. Main ion-optical	l parameter	s of AC	CULINNA-2.
$\begin{array}{ccccc} \theta_{0x} \mbox{ angular acceptance} & 60 & mrad \\ \theta_{0y} \mbox{ angular acceptance} & 70 & mrad \\ X \mbox{ momentum dispersion} & F1 \rightarrow F2 & 2.0 & cm/\% B\rho \\ \theta_x \mbox{ angul. mom. dispersion} & F1 \rightarrow F2 & 2.0 & cm/\% B\rho \\ \chi \mbox{ magnification} & - & 0.5 & mrad/\% B\rho \\ X \mbox{ magnification} & - & -1.0 & \\ Y \mbox{ magnification} & - & -7.4 & \\ X \mbox{ momentum dispersion} & F2 \rightarrow F3 & 3.3 & cm/\% B\rho \\ X \mbox{ magnification} & - & -1.7 & \\ Y \mbox{ magnification} & - & -2.0 & \\ X \mbox{ magnification} & F1 \rightarrow F3 & 1.7 & \\ Y \mbox{ magnification} & F1 \rightarrow F3 & 1.7 & \\ Y \mbox{ magnification} & - & 5.0 & \\ \mbox{ Length} & F1 \rightarrow F2 & 9.51 & m \\ \mbox{ Length} & F2 \rightarrow F3 & 14.35 & m \\ \mbox{ Length} & F3 \rightarrow F4 & 7.63 & m \\ \end{array}$	Primary beam spot size	F1	2 imes 2	mm^2
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Momentum acceptance		6.0	%
X momentum dispersion $F1 \rightarrow F2$ 2.0 $cm/\% B\rho$ θ_x angul. mom. disper. $ 0.5$ $mrad/\% B\rho$ X magnification $ -1.0$ Y magnification $ -7.4$ X momentum dispersion $F2 \rightarrow F3$ 3.3 $cm/\% B\rho$ X magnification $ -1.7$ Y magnification $ -1.7$ Y magnification $ -2.0$ X magnification $F1 \rightarrow F3$ 1.7 Y magnification $F1 \rightarrow F3$ 1.7 Y magnification $ 5.0$ Length $F1 \rightarrow F2$ 9.51 mLength $F2 \rightarrow F3$ 14.35 mLength $F3 \rightarrow F4$ 7.63 m	θ_{0x} angular acceptance		60	mrad
$\begin{array}{llllllllllllllllllllllllllllllllllll$	θ_{0y} angular acceptance		70	mrad
$\begin{array}{llllllllllllllllllllllllllllllllllll$	X momentum dispersion	$F1 \to F2$	2.0	$\mathrm{cm}/\% B ho$
Y magnification $ -7.4$ X momentum dispersion $F2 \rightarrow F3$ 3.3 $cm/\% B\rho$ X magnification $ -1.7$ Y magnification $ -2.0$ X magnification $F1 \rightarrow F3$ 1.7 Y magnification $ 5.0$ Length $F1 \rightarrow F2$ 9.51 mLength $F2 \rightarrow F3$ 14.35 mLength $F3 \rightarrow F4$ 7.63 m	θ_x angul. mom. disper.		0.5	mrad/% $B\rho$
$\begin{array}{cccccc} \text{X momentum dispersion} & \text{F2} \rightarrow \text{F3} & 3.3 & \text{cm}/\% B\rho\\ \text{X magnification} & - & -1.7\\ \text{Y magnification} & - & -2.0\\ \text{X magnification} & \text{F1} \rightarrow \text{F3} & 1.7\\ \text{Y magnification} & - & 5.0\\ \text{Length} & \text{F1} \rightarrow \text{F2} & 9.51 & \text{m}\\ \text{Length} & \text{F2} \rightarrow \text{F3} & 14.35 & \text{m}\\ \text{Length} & \text{F3} \rightarrow \text{F4} & 7.63 & \text{m} \end{array}$	X magnification	_	-1.0	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Y magnification	_	-7.4	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	X momentum dispersion	$F2 \to F3$	3.3	$\mathrm{cm}/\% B ho$
$\begin{array}{cccc} X \mbox{ magnification} & F1 \rightarrow F3 & 1.7 \\ Y \mbox{ magnification} & - & 5.0 \\ \mbox{ Length} & F1 \rightarrow F2 & 9.51 & m \\ \mbox{ Length} & F2 \rightarrow F3 & 14.35 & m \\ \mbox{ Length} & F3 \rightarrow F4 & 7.63 & m \\ \end{array}$	X magnification	_	-1.7	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Y magnification	_	-2.0	
$\begin{array}{ccccc} {\rm Length} & {\rm F1} \rightarrow {\rm F2} & 9.51 & {\rm m} \\ {\rm Length} & {\rm F2} \rightarrow {\rm F3} & 14.35 & {\rm m} \\ {\rm Length} & {\rm F3} \rightarrow {\rm F4} & 7.63 & {\rm m} \end{array}$	X magnification	$F1 \to F3$	1.7	
	Y magnification	_	5.0	
${\rm Length} {\rm F3} \rightarrow {\rm F4} {\rm ~~7.63} {\rm ~~m}$	Length	$F1 \to F2$	9.51	m
8	Length	$F2 \to F3$	14.35	m
${\rm Length} {\rm F3} \rightarrow {\rm F5} {\rm ~~13.25} {\rm ~~m}$	Length	$F3 \to F4$	7.63	m
	Length	$F3 \to F5$	13.25	m
$\label{eq:ength} {\rm Length} {\rm F1} \rightarrow {\rm F5} {\rm ~~37.1} {\rm ~~m}$	Length	$F1 \rightarrow F5$	37.1	m

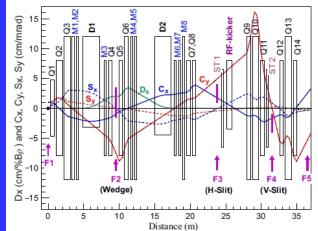
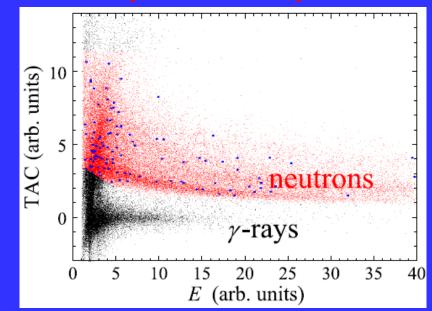



Fig. 6. Momentum dispersion $D_x = (x/\delta_P)$ and main firstorder cosine-like, $C_x = (x/x_0)$, $C_y = (y/y_0)$ and sine-like $S_x = (x/\theta_{0x})$, $S_y = (y/\theta_{0y})$ trajectories.

lon	E, AMeV	Reaction	l, pps/pμA	P, %	X_Y, mm (FWHM)	∆ p, ±%	Wedge Be, mm
⁶ He	29	¹¹ B(33.5 AMeV)+Be(1 mm)	2.2*10 ⁶	90.2	10_8	2.0	1.0
⁸ He	28	"	5.5*10 ⁴	95.4	9_7	3.25	1.0
⁹ Li	31	"	5.0*10 ⁵	97.6	12_9	2.0	1.0
¹⁰ Be	45	¹⁵ N (49.3 AMeV)+Be(1 mm)	2.3*10 ⁶	78.4	16_11	1.25	1.0
²⁶ P	28	³² S (52.7 AMeV)+Be (0.5 mm)	15	<0.5	18_12	0.75	0.5
²⁷ S	27		60	1	18_12	0.75	0.5

The ID plot for neutron spectrometer

