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1. introduction
❏ Multistrangeness production in hadron physics
 a. photoproduction (γ p → K K Ξ)

> CLAS & GlueX Collaborations
   at JLab is producing the data.

> The production mechanism is
   a two-step process.

> The hadron coupling constants
   are not well known.

> Theoretical analyses
   γ p → K K Ξ(1318)
    Nakayama et al. PRC.74.035205 (2006)

   γ p → K+ K+ Ξ*-(1530)
    No analyses yet

Goetz (CLAS) PRC.98.062201(R) (2018)

Ernst (GlueX) AIP.CP.2249.030041 (2020)

γ p → K+ K+ Ξ-(1318)
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1. introduction
❏ Multistrangeness production in hadron physics
 b. pp interaction (p p → Ξ Ξ)

> FANDA Collaboration at GSI-FAIR will produce
   the data.
    Lutz et al. 0903.3905 [hep-ex] Physics Performance Report

> The production mechanism is a two-step process.

> The amplitudes are described by the loop diagrams
    within a modified Regge type model.
    Titov et al. 1105.3847 [hep-ph]

> More rigorous analyses are called for.

❏ Loop diagrams

❏ Scattering amplitude

Titov et al. 1105.3847 [hep-ph]

> K & K* exchanges are possible.
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(A) K- p → K+ Ξ- (B) K- p → K0 Ξ0

❏ K- p → K Ξ
> Only (Λ(*) & Ʃ(*)) hyperons mediate in the Born diagrams.
> t-channel meson exchanges are not possible because no meson of strangeness two exists.

2. theoretical framework



(A) K- p → K+ Ξ- (B) K- p → K0 Ξ0

❏ K- p → K Ξ
> Only (Λ(*) & Ʃ(*)) hyperons mediate in the Born diagrams.
> t-channel meson exchanges are not possible because no meson of strangeness two exists.

◻ tetraquark in charm sector [LHCb, Nature Physics 18, 751 (2022)]

   > First observation with [ccud] content, Tcc(3875, 1+), width Г ~ 410 keV
      in the mass spectrum of “D0 D0 π+”
◻ tetraquark in strange sector
   > No meson of strangeness two is known to exist.

❏ The evidence of the pentaquark in charm sector, Pc+[uudcc], is
     clearer than that in strange sector, Ps+[uudss] & θ+[uudds].

meson         tetraquark

2. theoretical framework
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❏ K- p → K Ξ
> Only (Λ(*) & Ʃ(*)) hyperons mediate in the Born diagrams.
> t-channel meson exchanges are not possible because no meson of strangeness two exists.

‣ Use the dominant decay process: φ → K+K-, K* → Kπ, etc

(A) K- p → K+ Ξ- (B) K- p → K0 Ξ0

2. theoretical framework

Rescattering digram



❏ K- p → K Ξ
> Only (Λ(*) & Ʃ(*)) hyperons mediate in the Born diagrams.
> t-channel meson exchanges are not possible because no meson of strangeness two exists.
(A) K- p → K+ Ξ- (B) K- p → K0 Ξ0

Rescattering digram ◻ (Fig. b) We employ a hybridized Regge model to
   describe the backward angles in the u channel.

◻ (Fig. a) Additionally, in the s channel, we include (Λ* & Ʃ*)
   resonances which couple strongly to KN & KΞ channels.

◻ Rescattering diagram is calculated from the 3-dimensional
   reduction of the Bethe-Salpeter equation.

2. theoretical framework
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❏ K- p → K Ξ
> Only (Λ(*) & Ʃ(*)) hyperons mediate in the Born diagrams.
> t-channel meson exchanges are not possible because no meson of strangeness two exists.

❏ Effective Lagrangians ❏ Coupling constants

(λ = 1) Pseudoscalar (PS) form
(λ = 0) Pseudovector (PV) form

(A) K- p → K+ Ξ- (B) K- p → K0 Ξ0

2. theoretical framework
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❏ K- p → K Ξ
> Only (Λ(*) & Ʃ(*)) hyperons mediate in the Born diagrams.
> t-channel meson exchanges are not possible because no meson of strangeness two exists.

1(1)   -1(1)          1(1)   -1(1)                               [isospin factors]   1(1)   1(1)            √2     -√2
❏ Isospin factors

Λ exchange:

Ʃ exchange:

◻ u-channel Ʃ exchange: σ (K- p → K+ Ξ- ) ⨉ 4 = σ (K- p → K0 Ξ0)
◻ We consider two different isospin channels simultaneously: useful to constrain model parameters.

(A) K- p → K+ Ξ- (B) K- p → K0 Ξ0

2. theoretical framework
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sth (K- p → K Ξ)
        = 1.81 GeV

Λ : α(u) = -0.65 + 0.94u
Λ(1405) : excluded

Λ hyperons Ʃ hyperons

sth

sth

Ʃ  : α(u) = -0.79 + 0.87u
Ʃ* : α(u) = -0.27 + 0.9u

❏ Hyperon Regge trajectories
     Storrow, Phys.Rept.103.317 (1984)

2. theoretical framework
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Ʃ hyperons

Ʃ  : α(u) = -0.79 + 0.87u
Ʃ* : α(u) = -0.27 + 0.9u

❏ Hyperon Regge trajectories
     Storrow, Phys.Rept.103.317 (1984)
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2. theoretical framework

Ʃ(2250) **
 7/2-   ?



Nucleon                                                        Λ hyperons                      Ʃ hyperons

❏ Baryon Regge trajectories
     Storrow, Phys.Rept.103.317 (1984)
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2. theoretical framework

N(even) : α(u) = -0.38 + 0.99u

Clymton.
PRD.104.014023 (2021)

Feynman (Regge) propagator
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❏ PDG 2022
❏ We include (Λ* & Ʃ*) resonances
    which couple strongly to
    KN & KΞ channels.
❏ Partial decay width

2. theoretical framework
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2. theoretical framework

Λ(2100,7/2-) ****                                     Ʃ(2030,7/2+) ****

❏ Recent PWA emphasize only the role of Ʃ(2030,7/2+) in the K- p → K Ξ.

❏ We have found that Λ(2100,7/2-) is also essential to describe the K- p → K Ξ.
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❏ Rescattering amplitude

Mi = (φ, ρ, ω,π, η)
Bi = (Λ, Σ)

2. theoretical framework
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❏ Rescattering amplitude

◻ We fully calculate the real and imaginary parts.

Mi = (φ, ρ, ω,π, η)
Bi = (Λ, Σ)

πΛ (ρΛ,ωΛ)   φΛ   : Im part starts from here.

→ Re part starts from the reaction threshold.
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❏ Rescattering amplitude

◻ We fully calculate the real and imaginary parts.

Mi = (φ, ρ, ω,π, η)
Bi = (Λ, Σ)

πΛ (ρΛ,ωΛ)   φΛ   : Im part starts from here.

→ Re part starts from the reaction threshold.

2. theoretical framework

> The Real (Imaginary) part is crucial
   in the low (high) energy region.
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> Backward peaks due to
 a u-channel background
 contribution are clearly verified. 
> Inclusion of various s-channel
 Λ* & Ʃ* resonances provides
 good agreement with the data.

❏ Total & Differential cross sections (K- p → K+ Ξ- & K0 Ξ0) [u-channel background + s-channel Λ* & Ʃ*]
3. numerical results
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❏ Total & Differential cross sections (K- p → K+ Ξ- & K0 Ξ0) [u-channel background + s-channel Λ* & Ʃ*]
3. numerical results

> The sharp decreasing                                   > The sharp
   at the forward angle                                        forward peak

> Explained by the interference between s-channel (Λ*, Σ*) resonances
   of different isospins.

K- p → K+ Ξ-                                                K- p → K0 Ξ0
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> The presence of                                           > The absence of
   a forward peak                                                a forward peak

> Explained by the interference between s-channel (Λ*, Σ*) resonances
   of different isospins.

❏ Total & Differential cross sections (K- p → K+ Ξ- & K0 Ξ0) [u-channel background + s-channel Λ* & Ʃ*]
3. numerical results

K- p → K+ Ξ*-                                              K- p → K0 Ξ*0

Dauber,
PLB.29.609
(1969)

> The data indicate that
   the reaction mechanism of K- p → K Ξ* will be totally different from that of K- p → K Ξ.
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3. numerical results
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❏ The inclusion of the rescattering diagrams
    improves the recent J-PARC data.

Λ(1890,3/2+)  Ʃ(2030,7/2+)  Λ(2100,7/2- )

K- p → K+ Ξ- 



3. numerical results
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❏ Recoil asymmetries multiplied by differential cross sections

The backward angles are significantly
affected by the inclusion of the s-channel
(Λ*, Σ*) resonances for K- p → K+ Ξ- .

Changes in the forward angles were
relatively mild in both channels.

By definition, Py = Ty.
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◇       K induced reactions off nucleon                       K induced reactions off nuclei
          K- p → K+ Ξ-                                    ⇨                K- d → K+ Ξ- n
                           plane- or distorted-wave impulse approximation

4. application
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K0

K−

K+

S.H.Kim,
T.-S.H. Lee,
in process
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◇       K induced reactions off nucleon                       K induced reactions off nuclei
          K- p → π Σ                                      ⇨                K- d → π Σ n

4. application
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◇       K induced reactions off nucleon                       K induced reactions off nuclei
          K- p → K- p                                      ⇨                K- 12C → K- 12C
          K- p → K+ Ξ-                                    ⇨                K- 12C → K+ 12

ΞBe
                           plane- or distorted-wave impulse approximation

> Ξ hypernuclei is important to study multistrangeness systems and strange neutron stars in astrophysics.

◇ Relevant experiments to date at J-PARC:
    [P05] Spectroscopic Study of Ξ-Hypernucleus, 12

ΞBe, via the 12C(K-, K+) Reaction
    [P50] Charmed Baryon Spectroscopy via the (π-, D*-) reaction
    [P85] Spectroscopy of Omega Baryons
    [P95] Pion-induced phi-meson production on the proton, (π- p → φ n)
    [LoI] Study of Σ-N interaction using light Σ-nuclear system
    [LoI] Ξ Baryon Spectroscopy High-momentum Secondary Beam

4. application



21

◇ Multistrangeness production, K- p → K Ξ, is investigated in a hybridized Regge model
    for two different isospin channels (K- p → K+ Ξ- & K0 Ξ0).

◇ As for a background contribution, (Λ & Ʃ & Ʃ*(1385)) hyperon Regge trajectories are
    considered in the u channel to describe the backward angles.

◇ We employ a “pseudovector” scheme for the KNY & KΞY vertices rather than a “pseudoscalar” scheme.

◇ For K- p → K0 Ξ0, only (Ʃ & Ʃ*(1385)) Regge trajectories are possible
    and their relative contributions are well constrained.

◇ For K- p → K+ Ξ-, Λ Regge trajectory is more dominant than (Ʃ & Ʃ*(1385)) ones.

◇ Λ(1890, 3/2+), Ʃ(2030, 7/2+), and Λ(2100, 7/2-) play a crucial role in explaining the bump structures.

◇ The rescattering diagrams are essential to improve the recent J-PARC data.

5. Summary
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◇ This study is the first step toward developing
    reasonable reaction theories of meson-induced reactions.

    The extension of our hybrid model to other π- or K-induced reactions is essential
    for understanding the relevant reaction mechanisms more systematically, and
    will significantly contribute to the development of baryon spectroscopy;

    Relevant research is currently in progress. 

5. Summary
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    The extension of our hybrid model to other π- or K-induced reactions is essential
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    Relevant research is currently in progress. 
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Thank you very much for your attention
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D∗

D
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π- p → Mi Bi → K*0 Λ                          [Rescattering]        π- p → Mi Bi → D*- Λc+

‣ Use the dominant decay process:                         K* → Kπ, ρ → ππ          D* → Dπ, ρ → ππ

(a) “open” strange (charm) production
π- p → K*0 Λ                            [Regge + Resonance]     π- p → D*- Λc+

4. Application



(a) “open” strange production
π- p → K*0 Λ

> K exchange governs dσ/dt near −t′ ≈ 0, whereas
   K* exchange becomes dominant as −t′ increases.

S.H.Kim,
PRD.92.094021 (2015)

4. Application

18
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π- p → φ n [Regge + Resonance]

‣ Use the dominant decay process: φ → K+K-, ρπ,   K* → Kπ,   ρ → ππ

π- p → Mi Bi → φ n [Rescattering]

(b) “hidden” strange production

Ps0[uddss]

4. Application
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π- p → φ n [Regge + Resonance]

‣ Use the dominant decay process: φ → K+K-, ρπ,   K* → Kπ,   ρ → ππ

π- p → Mi Bi → φ n [Rescattering]

(b) “hidden” strange production

Ps0[uddss]

4. Application

[P95: T.Ishikawa, Proposal submitted
 using the J-PARC E16 spectrometer (2022)]

.

.

.

.

.

.



π- p → φ n [Regge + Resonance]

Ps0[uddss]

γ p → φ p [Pomeron + Resonance]

Ps+[uudss]

[S.H.Kim, T.S.H.Lee, S.i.Nam, Y. Oh, PRC.104.045202 (2021)][T.Ishikawa, Proposal submitted
 using the J-PARC E16 spectrometer (2022)]

4. Application

(b) “hidden” strange production

20



◻ The peak position is similar to each other. Any relation between them? 23

◻ The contribution from the impulse term for spin J=0 nuclei:
   [S.H.Kim, T.S.H.Lee, S.i.Nam, Y. Oh, PRC.104.045202 (2021)]

γ 4He → φ 4He                                                         γ p → φ p
Fc (FN) : 
nuclear (nucleon) charge FF

γ 4He → φ 4He                                                               γ p → φ p

5. Summary



◻ Our purpose is to extend the Regge plus Resonance (R + R) model
    to the meson-induced reactions off nucleon targets.
    [e.g.,   π- p → K*0 Λ (D*- Λc+),   φ n (J/ψ n), ...]

◻ Additionally, the Rescattering effects are considered from
    the 3-dimensional reduction of the Bethe-Salpeter equation.

⇨ We employ the Regge plus Resonance plus Rescattering effect (R + R + R) model
    to the K- p → K Ξ reaction.

03

1. Introduction



Comparison with other works

Λ(1890,3/2+)   Ʃ(2030,7/2+)   Ʃ(2250,7/2- ?)

Jackson et al. PRC.91.065208 (2015)

❏ The structure at W ≈ 2.2 GeV are
    explained by a destructive effect between
    “contact term” and “resonant amplitudes”.

Λ(1890,3/2+)
Ʃ(2030,7/2+)
Ʃ(2250,5/2- ?)

contact term

3. numerical results
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❏ Total & Differential cross sections (K- p → K+ Ξ- & K0 Ξ0) [u-channel background + s-channel Λ* & Ʃ*]
3. numerical results
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