Density dependence of the heavy light meson distribution amplitude

In collaboration with: Prof. Kazuo Tsushima (LFTC, Sao Paulo) **Dr. Jafar Arifi (RIKEN)**

14th APCTP-BLTP JINR Joint Workshop-Memorial Workshop in Honor of Prof. Yongseok Oh: Modern problems in nuclear and elementary particle physics, 9-14 July 2023, PIC-APCTP, Pohang

Parada Hutauruk Pukyong National University (PKNU)

PRD **107**, 114010 (2023)

My memoriam with Prof. Yongseok Oh

O I joined the Asia Pacific Center for Theoretical Physics (APCTP) as APEC-YST Postdoctoral O In my contract letter, it was obviously mentioned that I must work with Prof. Yongseok Oh

(50%) and with APCTP (50%)

O During working with Prof. Yongseok Oh, we published 5 papers

PHYSICAL REVIEW D covering particles, fields, gravitation, and cosmology						JPS Conf. Proc. 26, 0310 Proceedings of the 8th				
Highlights	Recent	Accepted	Collections	Authors	Referees	Search	Press	About	Pion Stru	ucture
Impact of medium modifications of the nucleon weak and electromagnetic form factors on the neutrino mean free path in dense matter							Abstract	Reference		
Parada T. P. Hutauruk, Yongseok Oh, and K. Tsushima Phys. Rev. D 98 , 013009 – Published 30 July 2018 PHYSICAL REVIEW C						Full text: PDF (eReade Parada T. P. Hutauruk JPS Cont. Proc. 26, 0240 Proceedings of the 8th				
covering nuc Highlights				ons A	uthors	Referees	Search	ו Pre	Effects o Form Fac	
Parada 1	. P. Hutaur	uk, Yongsec	erties of p ok Oh, and K. T	sushima	n a nu	clear m	nediur	η	Abstract Full text: PDF	Reference (eReader
Phys. Re	v. C 99 , 01	5202 – Pub	lished 10 Janu	ary 2019					Parada T. P. I	Hutauruk ¹

)31 (2019) [4 pages] International Conference on Quarks and Nuclear Physics

in a Nuclear Medium

ces

r) / PDF (Download) (356 kB)

¹, Yongseok Oh^{1,2}, and Kazuo Tsushima^{1,3} 31 (2019) [4 pages]

International Conference on Quarks and Nuclear Physics (QNP2018)

« Previous Chapter | N

lium Modifications of Nucleon on Neutrino Scattering in Dense Matter

ces

r) / PDF (Download) (383 kB)

¹, Yongseok Oh^{1,2}, and Kazuo Tsushima^{1,3}

PHYSICAL REVIEW D

Highlights	Recent	Accepted	Collections	Authors	Referees	Search
Open Acc	cess					

Valence-quark distributions of pions and kaons in a nuclear medium

Parada T. P. Hutauruk, J. J. Cobos-Martínez, Yongseok Oh, and K. Tsushima Phys. Rev. D 100, 094011 - Published 13 November 2019

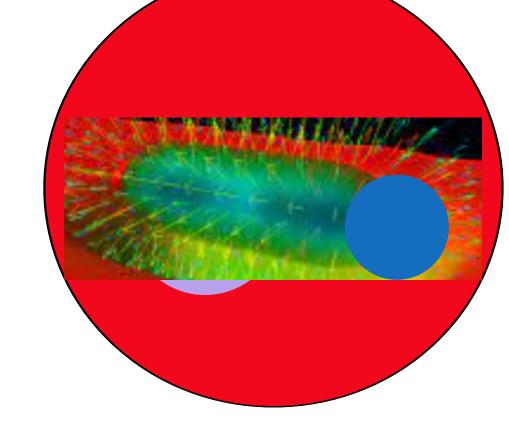
Press

- **O** Weak decay constants
- **O D**istribution amplitudes (DAs)

* A nuclear medium effect from the quark meson coupling (QMC) model

- **O** Effective Lagrangian of the QMC model
- O Quark masses in a nuclear medium
- ***** DAs in a nuclear medium
- ***** Summary and outlook

Outline


Meson contents

- # Light-Light and Heavy-light mesons quark contents: • Pseudoscalar mesons: π^+ ($u\bar{d}$), $K^+(u\bar{s})$, $D^+(c\bar{d})$, and $B^+(u\bar{b})$ • Vector mesons: $\rho^+(\mathbf{u}\bar{d})$, $K^{*+}(\mathbf{u}\bar{s})$, $B^{*+}(\mathbf{u}\bar{b})$, and $D^{*+}(\mathbf{c}\bar{d})$

Pion (π)

D meson

- O In the LFQM, the meson state——bound state of the constituent quark and antiquark pair in the noninteracting representation—-Bakamjian Thomas (BT) Construction—-the interaction is included in the meson mass operator—-satisfy the Poincare group structure [Bakamjian and Thomas, PR 92 (1953) 1300]
- O Interaction encoded in the mass eigenfunctions—-**applying the variational principle**—-to deal with the mass eigenvalues problem—-trial wave function in the Gaussian basis [Arifi, HM Choi, and C-R.Ji, PRD 107 (2023) 053003 and References therein]
- **O** The LFWF of the ground state meson in momentum space is given

$$\Psi^{JJ_z}_{\lambda_q\lambda_{\bar{q}}}(x,\mathbf{k}_\perp) =$$

Radial wave function

 $\Phi(x, \mathbf{k}_{\perp}) \mathcal{R}^{JJ_z}_{\lambda_q \lambda_{\bar{q}}}(x, \mathbf{k}_{\perp}),$

O The spin-orbit wave functions are defined by $\mathcal{R}_{\lambda_q \lambda_{\bar{q}}}^{JJ_z} = \frac{1}{\sqrt{2}\tilde{M}_0} \bar{u}_{\lambda_q}(p_q) \Gamma_{\mathrm{M}} v_{\lambda_{\bar{q}}}(p_{\bar{q}}), \qquad \tilde{M}_0 = \sqrt{M^2} - \frac{1}{M^2} \bar{M}_0 = \frac{1$

O The invariant meson mass is defined

$$M_0^2 = \frac{\mathbf{k}_{\perp}^2 + m_q^2}{x} + \frac{\mathbf{k}_{\perp}^2 + m_{\bar{q}}^2}{1 - x}$$

O The vertices for the pseudoscalar and vector mesons

$$\Gamma_{\rm P} = \gamma_5, \qquad \Gamma_{\rm V} = - \mathscr{E}(J_z) + \frac{\varepsilon \cdot (p_q - p_q)}{M_0 + m_q + q_q}$$

$$\tilde{M}_0 \equiv \sqrt{M_0^2 - (m_q - m_{\bar{q}})^2},$$

[Arifi, HM Choi, and C-R.Ji, PRD 107 (2023) 053003 and References therein]

$$\left(\frac{p_{\bar{q}}}{-m_{\bar{q}}}\right),$$

O The trial radial wave function in the Gaussian basis [Arifi, HM Choi, and C-R.Ji, PRD 107 (2023) 053003]

$$\Phi_{1S}(x,\mathbf{k}_{\perp}) = \frac{4\pi^{3/4}}{\beta^{3/2}} \sqrt{\frac{\partial k_z}{\partial x}} e^{-\mathbf{k}^2/2\beta^2},$$

O The LFWF is normalized

$$\int \frac{\mathrm{d}x\mathrm{d}^2\mathbf{k}_{\perp}}{2(2\pi)^3} |\Psi(x,\mathbf{k}_{\perp})|^2 = 1.$$

O Computing the eigenvalue—-BT construction—-using the meson mass operator

$$(H_0 + V_{q\bar{q}})|\Psi_{q\bar{q}}\rangle = M_{q\bar{q}}|\Psi_{q\bar{q}}\rangle,$$

$$\frac{\partial k_z}{\partial x} = \frac{M_0}{4x(1-x)} \left[1 - \frac{(m_q^2 - m_{\bar{q}}^2)^2}{M_0^4} \right],$$

$$H_0 = \sqrt{m_q^2 + \mathbf{p}_q^2} + \sqrt{m_{\bar{q}}^2 + \mathbf{p}_{\bar{q}}^2},$$

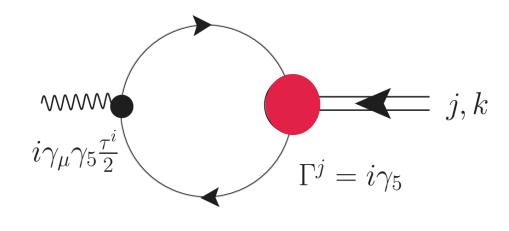
The quark-antiquark potentials
$$V_{\text{Conf}} = a + br,$$
 $V_{\text{Hyp}} = \frac{32\pi\alpha_s \langle \mathbf{S}_q \cdot \mathbf{S}_{\bar{q}} \rangle}{9m_q m_{\bar{q}}} \delta^3(r),$
 $V_{q\bar{q}} = V_{\text{Conf}} + V_{\text{Coul}} + V_{\text{Hyp}},$ $V_{\text{Coul}} = -\frac{4\alpha_s}{3r},$

O The LFWF and mass of the meson ground state—variational analysis $M_{a\bar{a}} = \langle \Psi_{a\bar{a}} | H_{a\bar{a}} | \Psi_{a\bar{a}} \rangle = \langle \phi_{1S} | H_{a\bar{a}} | \phi_{1S} \rangle,$

O Analytic mass formula

80 $\overline{3}$

[Arifi, HM Choi, and C-R.Ji, PRD 107 (2023) 053003]


$$\begin{split} M_{q\bar{q}} &= \frac{\beta}{\sqrt{\pi}} \sum_{i=q,\bar{q}} z_i e^{z_i/2} K_1 \left(\frac{z_i}{2}\right) + a + \frac{2b}{\beta\sqrt{\pi}} \\ &- \frac{8\alpha_s \beta}{3\sqrt{\pi}} + \frac{32\alpha_s \beta^3 \langle \mathbf{S}_q \cdot \mathbf{S}_{\bar{q}} \rangle}{9\sqrt{\pi}m_q m_{\bar{q}}}, \end{split}$$

- O The weak decay constant for the pseudoscalar and vector mesons
 - $$\begin{split} &\langle 0 | \bar{q} \gamma^{\mu} \gamma_5 q | \mathbf{P}(P) \rangle = i f_{\mathbf{P}} P^{\mu}, \\ &\langle 0 | \bar{q} \gamma^{\mu} q | \mathbf{V}(P, J_z) \rangle = f_{\mathbf{V}} M_{\mathbf{V}} \epsilon^{\mu} (J_z), \end{split}$$
- **O** The weak decay constant expressions in the LFQM

$$\begin{split} f_{\mathrm{M}} &= 2\sqrt{6} \int_{0}^{1} \mathrm{d}x \int \frac{\mathrm{d}^{2}\mathbf{k}_{\perp}}{2(2\pi)^{3}} \frac{\Phi(x,\mathbf{k}_{\perp})}{\sqrt{\mathcal{A}^{2} + \mathbf{k}_{\perp}^{2}}} \mathcal{O}_{\mathrm{M}}, \\ \mathcal{A} &= (1-x)m_{q} + xm_{\bar{q}} \quad D_{0} = M_{0} + m_{q} + m_{\bar{q}}. \end{split}$$

O The leading twist DAs for the pseudoso currents $A_P^+ = \langle 0 | \bar{q}(z) \gamma^+ \gamma_5 q(-z) | P(P) \rangle,$ $= i f_P P^+ \int_0^1 dx e^{i\zeta P \cdot z} \phi_P(x) |_{z^+z}$

Idoscalar and vector mesons [Arifi, HM Choi, and C-R.Ji, PRD 107 (2023) 053003

O The leading twist DAs for the pseudoscalar and vector mesons—-plus component

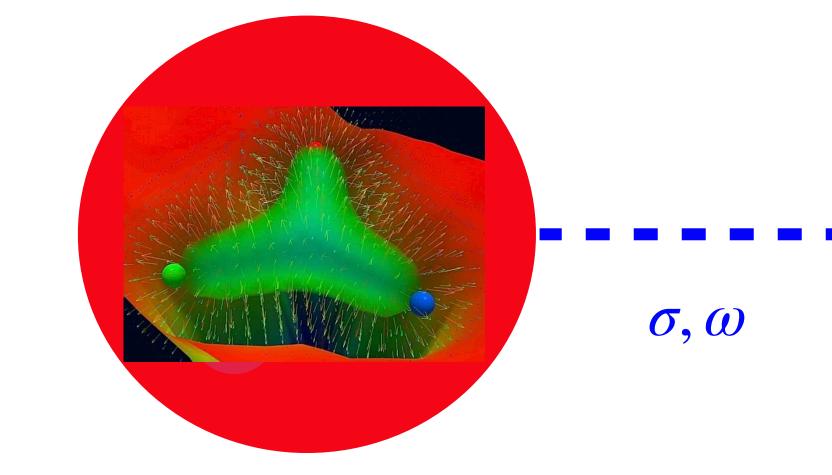
$$\begin{split} A_V^+ &= \langle 0 | \bar{q}(z) \gamma^+ q(-z) | \mathcal{V}(P,0) \rangle, \\ &= f_{\mathcal{V}} M_{\mathcal{V}} \epsilon^+(0) \int_0^1 \mathrm{d} x \mathrm{e}^{i\zeta P \cdot z} \phi_{\mathcal{V}}(x) |_{z^+ = z_\perp = 0}, \end{split}$$

O In the LFQM model, the final expression for the LFWF

$$\phi_{\mathrm{M}}(x) = \frac{2\sqrt{6}}{f_{\mathrm{M}}} \int \frac{\mathrm{d}^{2}\mathbf{k}_{\perp}}{2(2\pi)^{3}} \frac{\Phi(x,\mathbf{k}_{\perp})}{\sqrt{\mathcal{A}^{2} + \mathbf{k}_{\perp}^{2}}} \mathcal{O}_{\mathrm{M}}.$$

O DAs must satisfy the normalization

 $\phi_{
m N}$

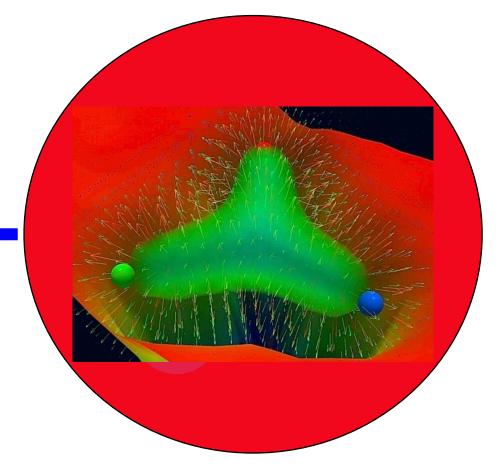

[Arifi, HM Choi, and C-R.Ji, PRD 107 (2023) 053003]

[HM Choi, and C-R.Ji, PRD 59 (1999) 074015]

$$_{\mathrm{M}}(x)\mathrm{d}x=1.$$

$$\mathcal{L}_{\text{QMC}} = \bar{\psi}_N [i\gamma \cdot \partial - M_N^*(\sigma) - g_\omega \omega^\mu \gamma_\mu] \psi_N$$

$$\mathcal{L}_{\text{meson}} = \frac{1}{2} \left(\partial_{\mu} \sigma \partial^{\mu} \sigma - m_{\sigma}^{2} \sigma^{2} \right) - \frac{1}{2} \partial_{\mu} \omega_{\nu} (\partial^{\mu} \omega^{\nu} - \partial^{\nu} \omega^{\mu}) + \frac{1}{2} m_{\omega}^{2} \omega^{\mu} \omega_{\mu}.$$



[PAM Guichon, PLB 200 (1988) 235-240]

O Effective Lagrangian of the QMC model for the symmetric nuclear matter (SNM)

$$\mathcal{L}_{\text{meson}}, \qquad \qquad M_N^*(\sigma) = M_N - g_\sigma(\sigma)\sigma.$$

[PAM Guichon, Koichi Saito, Rodionov, A. William, NPA 601 (1996) 349-379]

Nonoverlapping baryon

density and scalar density

$$\rho_B = \frac{\gamma}{(2\pi)^3} \int d\mathbf{k} \Theta(k_F - |\mathbf{k}|) = \frac{\gamma k_F^3}{3\pi^2},$$
$$\rho_s = \frac{\gamma}{(2\pi)^3} \int d\mathbf{k} \Theta(k_F - |\mathbf{k}|) \frac{M_N^*(\sigma)}{\sqrt{M_N^{*2}(\sigma) + \mathbf{k}^2}},$$

O In the QMC model, the nuclear matter is described as a **c**ollection of **n**onoverlapping MIT bags of nucleon

$$\begin{bmatrix} i\gamma \cdot \partial_x - (m_l - V_{\sigma}^q) \mp \gamma^0 \left(V_{\omega}^q + \frac{1}{2} V_{\rho}^q \right) \end{bmatrix} \begin{pmatrix} \psi_u(x) \\ \psi_{\bar{u}}(x) \end{pmatrix} = 0, \quad \begin{bmatrix} i\gamma \cdot \partial_x - (m_l - V_{\sigma}^q) \mp \gamma^0 \left(V_{\omega}^q - \frac{1}{2} V_{\rho}^q \right) \end{bmatrix} \begin{pmatrix} \psi_d(x) \\ \psi_{\bar{d}}(x) \end{pmatrix} = 0, \quad \begin{bmatrix} i\gamma \cdot \partial_x - m_s \end{bmatrix} \begin{pmatrix} \psi_s(x) \\ \psi_{\bar{s}}(x) \end{pmatrix} = 0,$$

[PAM Guichon, JR Stone, AW Thomas, PPNP 100 (2018) 262-297] O In the mean-field approach, the nucleon Fermi momentum is related to the baryon

[PAM Guichon, JR Stone, AW Thomas, PPNP 100 (2018) 262-297]

O The Dirac equations for the quark and antiquarks in the bag

O The effective in-medium quark masses [PAM Guichon, JR Stone, AW Thomas, PPNP 100 (2018) 262-297]

$$m_l^* \equiv m_l - V_\sigma^q,$$

- O For the strange, charm, and bottom quarks, the effective mass in the medium is equal to that in the vacuum—decoupled from the scalar and vector potential in nuclear matter
- O The scalar and vector mean-field potentials felt by the light quarks in SNM

$$V^{q}_{\sigma} \equiv g^{q}_{\sigma}\sigma = g^{q}_{\sigma}\langle\sigma\rangle,$$
$$V^{q}_{\omega} \equiv g^{q}_{\omega}\omega = g^{q}_{\omega}\delta^{\mu,0}\langle\omega^{\mu}\rangle,$$

O The effective mass of the hadron in the nuclear medium

$$m_h^* = \sum_{j=l,\bar{l},s,\bar{s}} \frac{n_j \Omega_j^* - z_h}{R_h^*} + \frac{4}{3} \pi R_h^{*3} B,$$
 Which is d

letermined by satisfying the stability condition

 $\left.\frac{dm_h^*}{dR_h}\right|_{R_h=R_h^*}=0,$

O The scalar and vector meson mean fields at densities

$$\begin{split} \sigma &= \frac{4g_{\sigma}^{N}C_{N}(\sigma)}{(2\pi)^{3}m_{\sigma}^{2}} \int d\mathbf{k}\Theta(k_{F} - |\mathbf{k}|) \frac{M_{N}^{*}(\sigma)}{\sqrt{M_{N}^{*2}(\sigma) + \mathbf{k}^{2}}}, \qquad \omega = \frac{g_{\omega}\rho_{B}}{m_{\omega}^{2}}, \qquad C_{N}(\sigma) = \frac{-1}{g_{\sigma}^{N}} \left[\frac{\partial M_{N}^{*}(\sigma)}{\partial \sigma}\right], \\ &= \frac{4g_{\sigma}^{N}C_{N}(\sigma)}{(2\pi)^{3}m_{\sigma}^{2}}\rho_{s}, \end{split}$$

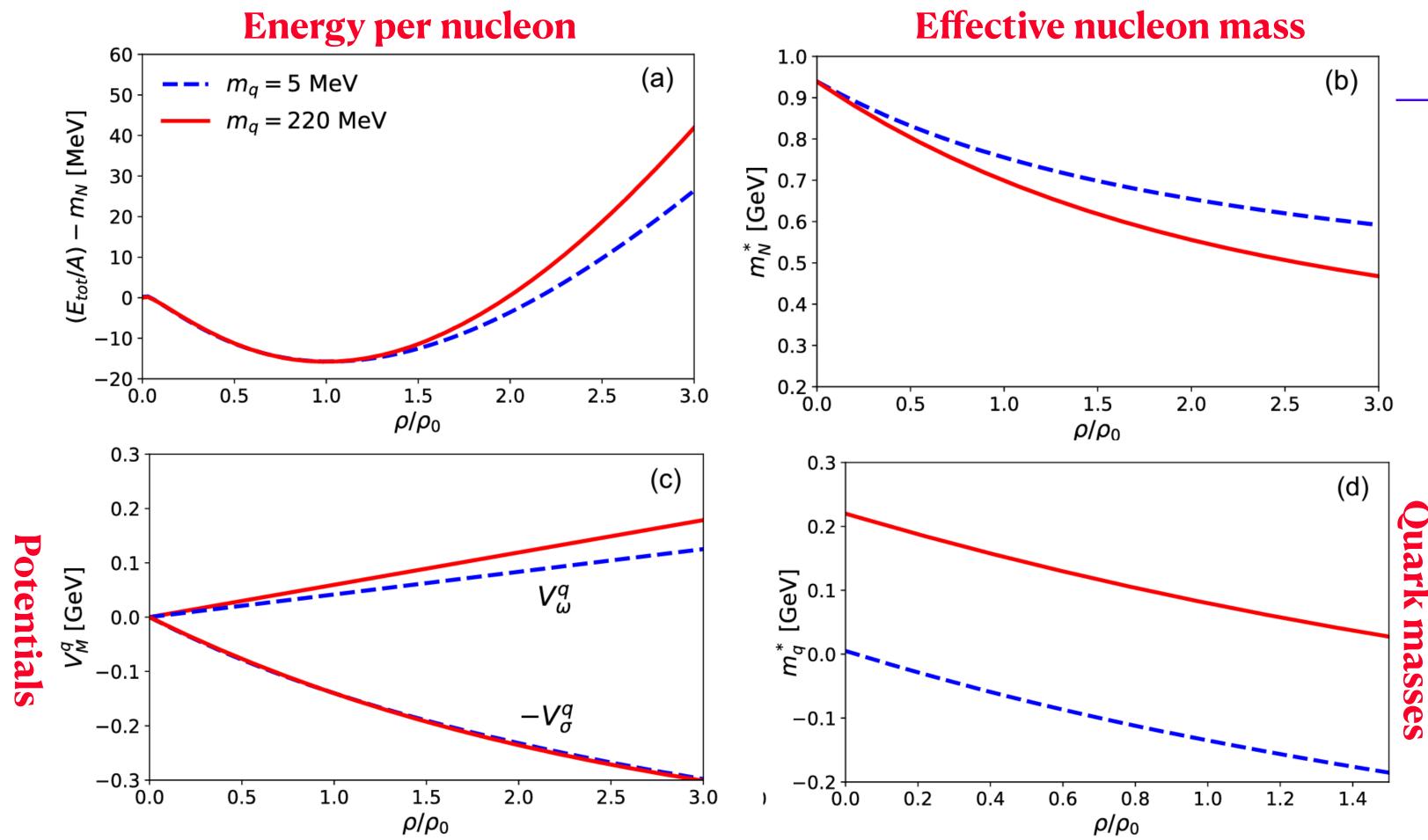
• $C_N(\sigma) = 1$ for the point-like nucleon—-the Q • The energy total per nucleon $E^{\text{tot}}/A =$

O The scalar and vector meson mean fields at the hadron level are related to baryon and scalar

 $O_{N}(\sigma) = 1$ for the point-like nucleon—the QMC model is similar to the QHD (Walecka) model

$$= \frac{4}{(2\pi)^3 \rho_B} \int d\mathbf{k} \Theta(k_F - |\mathbf{k}|) \sqrt{M_N^{*2}(\sigma) + \mathbf{k}^2} + \frac{m_\sigma^2 \sigma^2}{2\rho_B} + \frac{g_\omega^2 \rho_B}{2m_\omega^2}.$$

O The total energy per nucleon

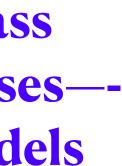

$$E^{\text{tot}}/A = \frac{4}{(2\pi)^3 \rho_B} \int d\mathbf{k} \Theta(k_F - |\mathbf{k}|) \sqrt{M_N^{*2}(\sigma) + \mathbf{k}^2} + \frac{m_\sigma^2 \sigma^2}{2\rho_B} + \frac{g_\omega^2 \rho_B}{2m_\omega^2}.$$

O The coupling constants are taken by fitting to energy at saturation density

•		• · · ·	_	
m_q [MeV]	$(g_{\sigma}^{N})^{2}/4\pi$	$(g^N_\omega)^2/4\pi$	m_N^* [MeV]	K [MeV]
5	5.39	5.30	755	279
220	6.40	7.57	699	321

[PAM Guichon, JR Stone, AW Thomas, PPNP 100 (2018) 262-297]

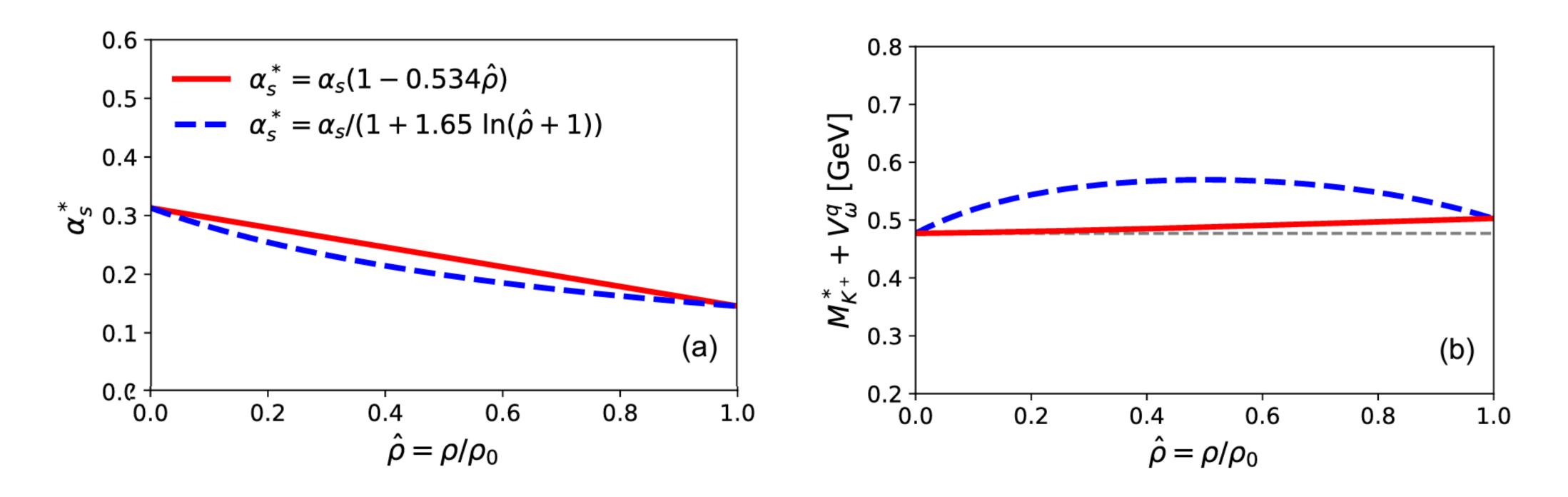
O Numerical results for the QMC model


[Ahmad Jafar Arifi, <u>PTPH</u>, Kazuo Tsushima, PRD 107 (2023) 114010]

-The energy total per nucleon for different quark masses produces the binding energy at saturation density

——Effective nucleon mass decreases as density increases-consistent with other models

Quark mass decreases as the density increases



[Ahmad Jafar Arifi, PTPH, Kazuo Tsushima, PRD 107 (2023) 114010] O The strong coupling constant is modified in nuclear medium

$$\alpha_s^* \equiv \begin{cases} \alpha_{s(1)}^*(\rho) = \alpha_s (1 - b_1 \hat{\rho}), \\ \alpha_{s(2)}^*(\rho) = \frac{\alpha_s}{1 + b_2 \ln(\hat{\rho} + 1)}, \end{cases}$$

vector potential

$$p_i^{*0} = \begin{cases} E_q^* + V_{\omega}^q, & \text{for} \\ E_{\bar{q}}^* - V_{\omega}^q, & \text{for} \end{cases}$$

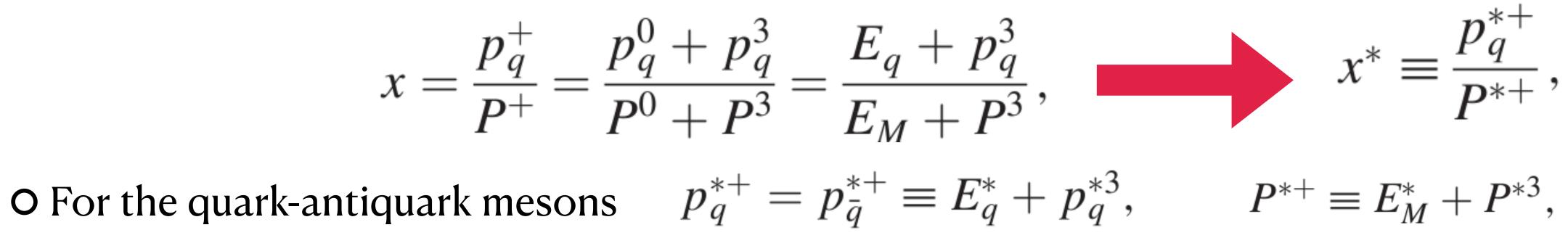
O The total meson energies

 D^{*0} —

[Ahmad Jafar Arifi, <u>PTPH</u>, Kazuo Tsushima, PRD 107 (2023) 114010]

- O The light quark and antiquark energies are modified in a nuclear medium by the
 - r light quark,
 - r light antiquark,

$$\begin{cases} E_M^*, & \text{for } (q\bar{q}), \\ E_M^* + V_{\omega}^q, & \text{for } (q\bar{Q}), \\ E_M^* - V_{\omega}^q, & \text{for } (Q\bar{q}), \end{cases}$$


O The Brjorken variable x—defined by the plus-component ratio of the quark to the meson momenta in free space

$$x = \frac{p_q^+}{P^+} = \frac{p_q^0 + p_q^3}{P^0 + P^3}$$

O In a nuclear medium, the Bjorken variable has a new definition

$$x \to \tilde{x}^* = \frac{p_q^{*+} + V_{\omega}^q}{P^{*+}} = x^* + \frac{V_{\omega}^q}{P^{*+}},$$

O By applying a change variable definition——to shift the integral limit of the Bjorken variable in calculating the weak decay constant for the light mesons

O The weak-decay constant for the light meson in a nuclear medium is given by

$$f_{\rm M}^* = 2\sqrt{6} \int_{-\frac{V_{\omega}^q}{P^{*+}}}^{1 - \frac{V_{\omega}^q}{P^{*+}}} \mathrm{d}x^* \int \frac{\mathrm{d}^2 \mathbf{k}_{\perp}}{2(2\pi)^3} \frac{\Phi(\tilde{x}^*, \mathbf{k}_{\perp})}{\sqrt{\mathcal{A}(\tilde{x}^*)^2 + \mathbf{k}_{\perp}^2}} \mathcal{O}_{\rm M}(\tilde{x}^*, \mathbf{k}_{\perp}).$$

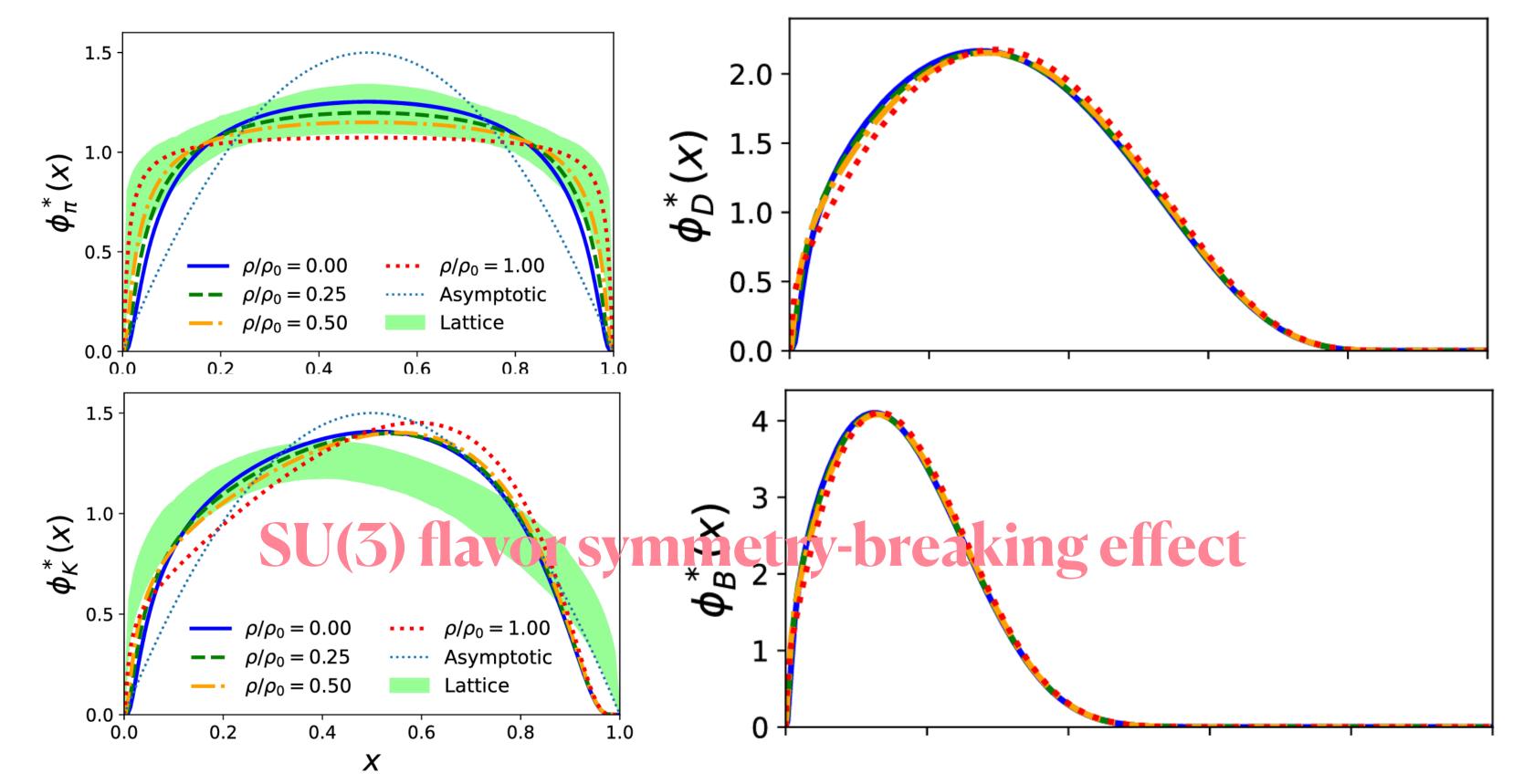
O A final expression of the weak decay constant for the light meson in a nuclear medium

$$f_{\mathrm{M}}^* = 2\sqrt{6} \int_0^1 \mathrm{d}\tilde{x}^* \int \frac{\mathrm{d}^2 \mathbf{k}_{\perp}}{2(2\pi)^3} \frac{\Phi(\tilde{x}^*, \mathbf{k}_{\perp})}{\sqrt{\mathcal{A}(\tilde{x}^*)^2 + \mathbf{k}_{\perp}^2}} \mathcal{O}_{\mathrm{M}}(\tilde{x}^*, \mathbf{k}_{\perp}).$$

[Ahmad Jafar Arifi, <u>PTPH</u>, Kazuo Tsushima, PRD 107 (2023) 114010]

- [Ahmad Jafar Arifi, <u>PTPH</u>, Kazuo Tsushima, PRD 107 (2023) 114010] ^O For the light-heavy meson—-qQ or $\bar{q}Q$ contents—-Both scalar and vector potential contribute to the weak decay constant and DAs in a nuclear medium
- O The longitudinal momentum for the quark and antiquark in a nuclear medium are given

$$x \to \begin{cases} \tilde{x}^* = \frac{p_q^{*+} + V_{\omega}^q}{P^{*+} + V_{\omega}^q} = \frac{x^* + V_{\omega}^q / P^{*+}}{(1 + V_{\omega}^q / P^{*+})}, & \text{for } (q\bar{Q}), \\ \tilde{x}^* = \frac{p_q^{*+} - V_{\omega}^q}{P^{*+} - V_{\omega}^q} = \frac{x^* - V_{\omega}^q / P^{*+}}{(1 - V_{\omega}^q / P^{*+})}, & \text{for } (Q\bar{q}). \end{cases} \qquad dx^* = (1 \pm V_{\omega}^q / P^{*+}) d\tilde{x}^*,$$


O A final expression for the light-heavy meson decay weak constant in a nuclear medium

$$G_{\mathrm{M}}^{*} = 2\sqrt{6} \int_{0}^{1} \mathrm{d}\tilde{x}^{*} \int \frac{\mathrm{d}^{2}\mathbf{k}_{\perp}}{2(2\pi)^{3}} \left(1 \pm \frac{1}{R}\right)$$

 $\times \frac{\Phi(\tilde{x}^{*}, \mathbf{k}_{\perp})}{\sqrt{\mathcal{A}(\tilde{x}^{*})^{2} + \mathbf{k}_{\perp}^{2}}} \mathcal{O}_{\mathrm{M}}(\tilde{x}^{*}, \mathbf{k}_{\perp})$

$$\left(\frac{V_{\omega}^{q}}{\sigma^{*+}}\right)$$

DAs in Nuclear Medium

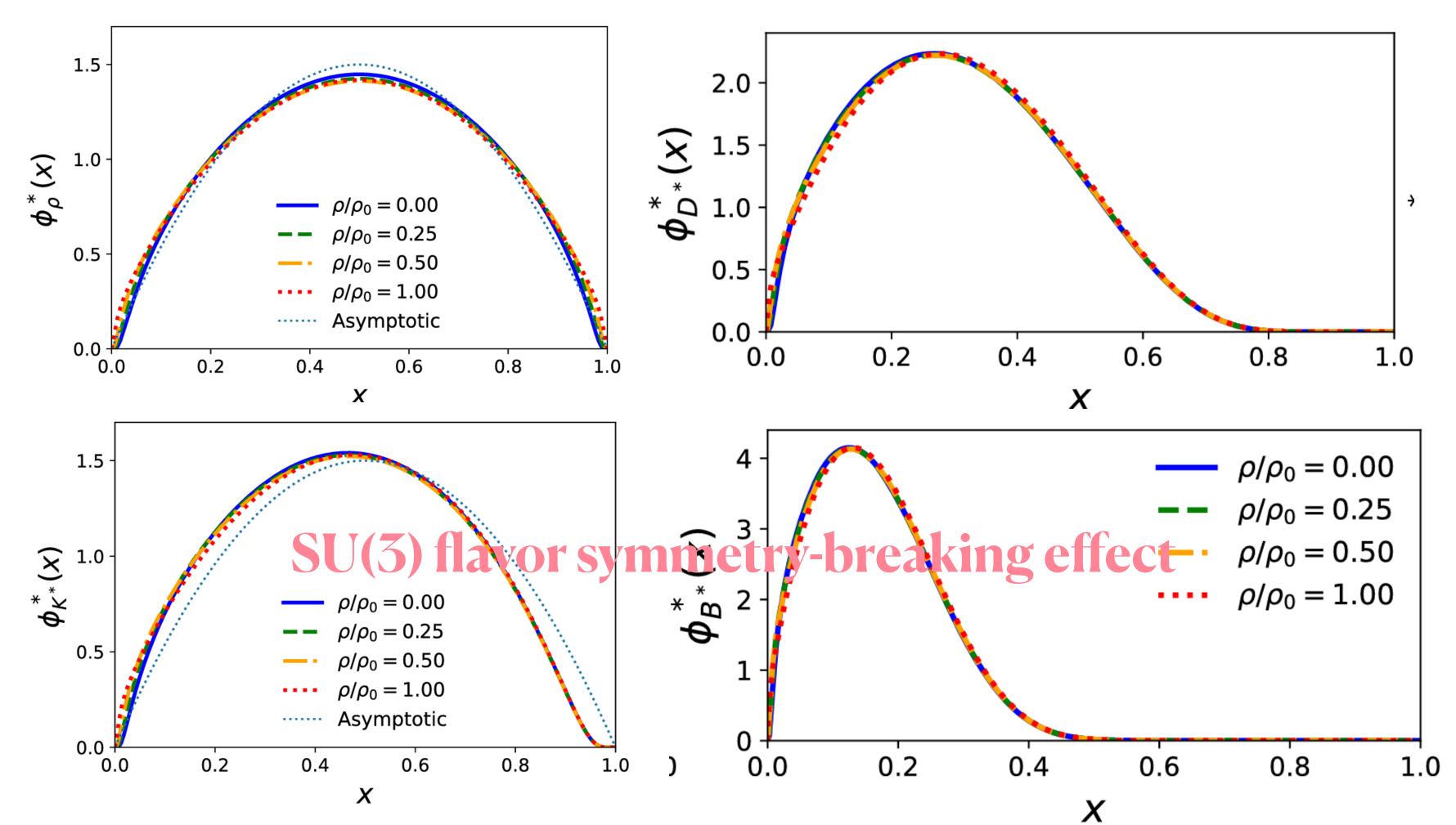
• Numerical results for DAs for the pseudoscalar mesons

[Lattice Parton Collaboration, PRL 129 (2022) 132001]

[Ahmad Jafar Arifi, <u>PTPH</u>, Kazuo Tsushima, PRD 107 (2023) 114010]

---Pion DA is consistent with the lattice QCD results in free space

---Kaon DA is consistent with the lattice QCD results in free space at low -x but at x>0.45 is rather different



DAs in Nuclear Medium

Numerical results for DAs for the vector mesons

[Ahmad Jafar Arifi, <u>PTPH</u>, Kazuo Tsushima, PRD 107 (2023) 114010] DY MESONS

Summary and Outlook

- We have demonstrated the DAs for the light-light and heavy-light mesons in free space and nuclear medium——Pion and Kaon DAs (low-x) results are consistent with the lattice QCD data——Unfortunately no (exp+lattice) data available for the heavy-light mesons
- O Results for this calculation look promising——-we are going to extend our investigation/studying on the medium effects on the heavy-light meson form factors——Heavy-light meson is a very interesting object/system because they have different quark contents—-light and heavy quarks ——different symmetries
- O Other indirect observables could be possible to observe heavy-light mesons——to observe the sensitiveness of the structure and properties of meson to the nuclear medium effects—-PDF, GPD, etc

Thank you very much for your attention

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (2018R1A5A1025563, 2022R1A2C1003964, and 2022K2A9A1A0609176).