Hadronic Physics at J-PARC with the memory of Prof. Oh

July 12, 2023 Shinya SAWADA KEK/J-PARC

Prof. Oh has been a center of the collaboration on hadronic physics in Asia and worldwide…

J-PARC

Japan Proton Accelerator Research Complex

Neutrino Beams (to Kamioka) <

> 50 Gel/ c. Materials and Life Experimental Faciney

ini i LOT S .

Synchrotrom

JFY2007 Beams JFY2008 Beams JFY2009 Beams

orkshop on EIC Physics and Detectors, Nationa Central University, Taiwan Bird's eye photo in January of 2016 Hadron Exp. Facility

J-PARC Facility

(KEK/JAEA)

South to North

Experimenta

Areas

Location of J-PARC

4

Goals of J-PARC

Recent Achievements in research at the Hadron Experimental Facility

PHYSICAL REVIEW D 97, 023010 (2018)

Effective interactions of hyperons and mass-radius relation of neutron stars

Yeunhwan Lim,^{1,*} Chang-Hwan Lee,^{2,†} and Yongseok Oh^{3,4,‡} ¹Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA ²Department of Physics, Pusan National University, Busan 46241, Korea ³Department of Physics, Kyungpook National University, Daegu 41566, Korea ⁴Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 37673, Korea

(Received 9 August 2017; published 18 January 2018)

We examine the role of hyperons in a neutron star based on the relativistic mean field approach. For nuclear matter below 1.5 times the normal nuclear density we constrain the model parameters by using the symmetric nuclear matter properties and theoretical investigations for neutron matter in the literature. We then extend the model to higher densities by including hyperons and isoscalar vector mesons that contain strangeness degree of freedom. We confirm that the ϕ meson induces a Λ repulsive force and hardens the equation of state. The hardening arising from the ϕ meson compensates the softening from the existence of hyperons. The flavor SU(3) and spin-flavor SU(6) relations are examined as well. We found that the coupling constants fitted by neutron matter properties could yield high enough maximum mass of a neutron star and the obtained results satisfy both the mass and radius constraints. The onset of the hyperon direct Urca process in neutron stars is also investigated using our permetrigation

DOI: 10.1103/PhysRevD.97.023010

Discussed one of the major physics cases investigated at J-PARC: Hyperon Pazzle

FIG. 10. Mass and radii curves with the variation of z with $\alpha_V = 1$ in the RGCR model, i.e., case II. The red solid line is the result of the model in the SU(2) case and the dashed line is that of case I.

PHYSICAL REVIEW C 91, 065208 (2015)

$\bar{K} + N \rightarrow K + \Xi$ reaction and S = -1 hyperon resonances

Benjamin C. Jackson,¹ Yongseok Oh,^{2,3,*} H. Haberzettl,^{4,†} and K. Nakayama^{1,5,‡}
¹Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA
²Department of Physics, Kyungpook National University, Daegu 702-701, Korea
³Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 790-784, Korea
⁴Institute for Nuclear Studies and Department of Physics, The George Washington University, Washington, DC 20052, USA
⁵Institut für Kernphysik and Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich, Germany (Received 4 March 2015; revised manuscript received 17 May 2015; published 25 June 2015)

The $\bar{K} + N \to K + \Xi$ reaction is studied for center-of-momentum energies ranging from threshold to 3 GeV in an effective Lagrangian approach that includes the hyperon *s*- and *u*-channel contributions as well as a phenomenological contact amplitude. The latter accounts for the rescattering term in the scattering equation and possible short-range dynamics not included explicitly in the model. Existing data are well reproduced and three above-the-threshold resonances were found to be required to describe the data, namely, the $\Lambda(1890)$, $\Sigma(2030)$, and $\Sigma(2250)$. For the latter resonance we have assumed the spin-parity of $J^P = 5/2^-$ and a mass of 2265 MeV. The $\Sigma(2030)$ resonance is crucial in achieving a good reproduction of not only the measured total and differential cross sections but also the recoil polarization asymmetry. More precise data are required before a more definitive statement can be made about the other two resonances, in particular, about the $\Sigma(2250)$ resonance that is introduced to describe a small bump structure observed in the total cross section of $K^- + p \to K^+ + \Xi^-$. The present analysis also reveals a peculiar behavior of the total cross-section data in the threshold energy region in $K^- + p \to K^+ + \Xi^-$, where the *P* and *D* waves dominate instead of the usual *S* wave. Predictions for the target-recoil asymmetries of the $\bar{K} + N \to K + \Xi$ reaction are also presented.

DOI: 10.1103/PhysRevC.91.065208

PACS number(s): 13.75.Jz, 13.60.Rj, 13.88.+e, 14.20.Jn

Pointed out the importance of the experimental data from J-PARC and other experimental facilities.

3rd International WS on the Extension Project for the J-PARC Hadron Experimental Facility (3rd J-PARC HEF-ex WS), Mar.14-16 2023, J-PARC

Kbar-N scattering for *<u>E</u> production*

Yongseok Oh (Kyungpook National University, Korea)

3rd International Workshop on the Extension Project for the J-PARC Hadron Experimental Facility 2023. 3. 14 - 3.16, J-PARC, Tokai, Japan

HUA

related topics

Hadron Hall Upers' Apposition Write-ups for workshop on the project for the extended hadron experimental facility of J-PARC Partial collection of LOEs at the extended hadron hall and the

Date: March 5, 2021

Proposal for JLab PAC48 Strange Hadron Spectroscopy with Secondary KL Beam in Hall D

Experimental Support: Standard Adukas⁴⁴, Monico Asarpa (Contect Fores, Spikesperson)⁴⁴, Arthak Astroyas¹, Alexander Antregensio⁴⁶, Marcova Balouth¹, Mohala Bankkasov (Spikesperson)⁴⁴, Wahg Banke⁴⁶, Vadaur Berknott^{1,46}, Qia Corea, Beenera¹⁹, Timoto Pillack⁴⁰, Wener Joogka¹⁴, William Brock⁴⁷, William Brock⁴⁷, Wolfer Butter⁴⁷, Bagene Chaldw¹⁷, Oreian Clarif, Piakp Oci⁴⁹, Wako Check¹, Donal Dupf, Powl Experimente⁴⁷, Oreian Clarif, Piakp Oci⁴⁹, Wako Check¹⁷, Donal Dupf, Powl Experimente⁴⁷, Gerand Clair", Philo Cole", Volke Creek", Donal Day", Prive Degnateko", Alexande Durd, Sean Doble Gybergerson's, Gall Dobge", Anniho Polgorieko, M. Simon Erichans⁶⁴, Howare Egaya (<u>Like Cetter Ferce</u>)¹, Dens Ephane⁶⁴), Paul Dagero's, Suart Pegni, Alexandre Hagni, Seeger Vintoret, "Lang Cash", France Garbale²⁴, Ashe Gaparias¹⁸, Gagli Gavalan⁶⁴, Derk Glazer¹⁴, Colo Oleane¹⁴, Valarim Greysber¹, Lis Gurd, "Jond Hamisol", Averk Hayrapeygn", Gaith Hotz⁴⁴

Andrew Hurley⁴⁶, Charles Hyde⁴⁰, Isabella Illari⁴⁹, David Iteland⁴³, Igal Jaegle⁴⁹, Kyungseon Joo⁵⁰, Vanik Kakoyan¹, Grzegorz Kalicy¹¹, Mahmoud Kamel¹³, Christopher Keith⁴⁰ Chan Wook Kimi¹⁰, Ebenhard Klemp¹, Geoffey Krafft⁴⁰, Sebashan Kulm⁴¹, Sergey Kuleshov², Alexander Laptev⁴⁷, Ilya Lami^{20,49}, David Larence⁴⁰, David Lersch⁴¹, Wenhang Ll⁴⁰, Kevin Lucke⁴⁷, Valey Lydboviskij¹⁰,^{10,11,14}, David Mack⁴⁹, Michael McCaughan⁴⁰. Kroni Luckai[®], Valey Judovstali[®](^{BAL}Na[®]), David Macl[®], Minhal Moc.[®], Minhal Moc.[®], Minhal Moc.[®], Watto Matter[®], Minhal Moc.[®], [®] Nato Matter[®], [®] Nato Matter[®]

Nilanga Wickramaarachchi⁴⁹, Bogdan Wojtsekhowski⁴⁰, Nicholas Zachariou⁴³, Jonathan Zaräng⁸¹, Ixie Zhang⁸⁴

Theoretical Support Alexey Anisovich⁶⁴⁴, Alexei Bazavor²⁶, Rene Belleiet²⁶, Veronique Bernard⁴⁶, Gilbetto Colangelo⁷, Alex Cheplo⁴⁷, Michael Doring¹⁰, Al Bikanderan¹⁰, Jose Guty^{20,40}, Heinut Hilbersttil¹⁰, Marza Hadaminaterolov²⁶⁷, Robert Jahre, Berne Kopelson-Ma Heinrich Leutwyler⁶, Maxim Mai¹⁰, Terry Marf²⁰, Maxim Matweev⁴⁴, Ulf-O. Meilher^{4,29}, Colin Morningstar⁹, Bachir Moussallam⁴², Kanzo Nakayama³⁰, Wolfgang Ochs⁴⁰. Youngseck Ch¹⁰, Brist Omerovic²⁰, Hedan Osmanovic⁴⁰, Eulogio Ose⁴², Ankmo Palano⁴⁴, Jose Pellez⁴⁴, Alessandro Pillon^{46,67}, Maxim Polyakov⁴⁶, David Richards⁴⁶, Arkaitz Rodas^{46,46} Dan-Ölof Riska¹³, Jacobo Ruiz de Elvira¹, Hui-Young Ryu⁴⁹, Elena Santopinto²⁰, Andrey Sarantsev¹⁴⁴, Jugoslav Stahov⁴⁸, Alfred Švars⁴⁹, Adam Szczepaniak^{12,40}, Ronald Workman¹⁰, Bing-Song Zou⁴

- Ξ production as a probe to study hyperon resonances of S=-1
- Ξ spectrum to understand hyperon structure
- Theoretical investigation of the reactions for Ξ production

 $\gamma N \to KK\Xi \text{ (JLab)} \quad \bar{K}N \to K\Xi \text{ (J-PARC)}$ $p\bar{p} \to \Xi\bar{\Xi} \text{ (FAIR)} \quad \pi N \to K K \Xi \text{ (J-PARC)}$

Extension of Ξ production to Ξ* production

082154

Prof. Oh's activities extended even for EIC

NCU workshop on EIC physics and detectors

Korean EIC & J/ψ Photoproduction

Yongseok Oh (Kyungpook National University) Asia Pacific Center for Theoretical Physics (APCTP)

- A hub for our activities

NCU Workshop on EIC Physics and Detectors, National Central University, Dec. 9 - 10, 2022

Potential Korean involvement for EIC

J/ψ Photoproduction off Nucleons

T.-S. H. Lee, S. Sakinah, Y. Oh, arXiv:2210.02154, to be published in Eur. Phys. J. A

I would like to offer my deepest condolences. We, the hadronic physics community, miss Professor Yongseok Oh forever.

