asia pacific center for theoretical physics

EM form factors of the three-nucleon systems in the Bethe-Salpeter-Faddeev approach

S. Bondarenko, V. Burov ${ }^{1}$, S. Yurev

Joint Institute for Nuclear Research, Dubna, Russia

14th APCTP - BLTP JINR Joint Workshop,
"Modern problems in nuclear and elementary particle physics"
Pohang,
Korea, July 9-15, 2023
${ }^{1}$ deceased

Motivation

- the relativistic properties of the Faddeev equation for a bound $3 N$ system
- the dynamic relativistic properties of the reaction with a bound $3 N$ system (EM form factors)
- $3 N$ bound system: $I=1 / 2 \rightarrow$ two isobars $T={ }^{3} H$ and ${ }^{3} H e ; S=1 / 2 \rightarrow$ two form factors F_{C}, F_{M};

Experimental data for ${ }^{3} \mathrm{He}$

Experimental data for ${ }^{3} \mathrm{H}$

The relativistic three-particle equation for T matrix

is considered in the Faddeev form with the following assumptions:

- no three-particles interaction $V_{123}=\sum_{i \neq j} V_{i j}$
- two-particles interaction has the separable phenomenological form
- nucleon propagators are chosen in a scalar form
- the only strong interactions are considered (not EM), so ${ }^{3} \mathrm{He} \equiv T$

Bethe-Salpeter-Faddeev equation

$$
\left[\begin{array}{l}
T^{(1)} \\
T^{(2)} \\
T^{(3)}
\end{array}\right]=\left[\begin{array}{c}
T_{1} \\
T_{2} \\
T_{3}
\end{array}\right]-\left[\begin{array}{ccc}
0 & T_{1} G_{1} & T_{1} G_{1} \\
T_{2} G_{2} & 0 & T_{2} G_{2} \\
T_{3} G_{3} & T_{3} G_{3} & 0
\end{array}\right]\left[\begin{array}{c}
T^{(1)} \\
T^{(2)} \\
T^{(3)}
\end{array}\right]
$$

where full three-particles T matrix $T=\sum_{i} T^{(i)}, G_{i}$ is the free two-particles (j and n) Green function (ijn is cyclic permutation of ($1,2,3$)):

$$
G_{i}\left(k_{j}, k_{n}\right)=1 /\left(k_{j}^{2}-m_{N}^{2}+i \epsilon\right) /\left(k_{n}^{2}-m_{N}^{2}+i \epsilon\right)
$$

and T_{i} is the two-particles T matrix which can be written as follows

$$
T_{i}\left(k_{1}, k_{2}, k_{3} ; k_{1}^{\prime}, k_{2}^{\prime}, k_{3}^{\prime}\right)=(2 \pi)^{4} \delta^{(4)}\left(k_{i}-k_{i}^{\prime}\right) T_{i}\left(k_{j}, k_{n} ; k_{j}^{\prime}, k_{n}^{\prime}\right)
$$

with $s_{i}=\left(k_{j}+k_{n}\right)^{2}=\left(k_{j}^{\prime}+k_{n}^{\prime}\right)^{2}$.

Bethe-Salpeter equation for the nucleon-nucleon T matrix

$$
T\left(p, p^{\prime} ; P\right)=V\left(p, p^{\prime} ; P\right)+\frac{i}{(2 \pi)^{4}} \int d^{4} k V(p, k ; P) G(k ; P) T\left(k, p^{\prime} ; P\right)
$$

p^{\prime}, p - the relative four-momenta
P - the total four-momentum
$T\left(p, p^{\prime} ; P\right)$ - two-nucleon t matrix
$V\left(p, p^{\prime} ; P\right)$ - kernel of nucleon-nucleon interaction
$G(p ; P)$ - free scalar two-particle propagator

$$
G^{-1}(p ; P)=\left[(P / 2+p)^{2}-m_{N}^{2}+i \epsilon\right]\left[(P / 2-p)^{2}-m_{N}^{2}+i \epsilon\right]
$$

Separable kernels of the $N N$ interaction

The separable kernels of the nucleon-nucleon interaction are widely used in the calculations. The separable kernel as a nonlocal covariant interaction representing complex nature of the space-time continuum.
Separable rank-one Ansatz for the kernel

$$
V_{L}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right| ; p_{0},|\mathbf{p}| ; s\right)=\lambda^{[L]}(s) g^{[L]}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right|\right) g^{[L]}\left(p_{0},|\mathbf{p}|\right)
$$

Solution for the T matrix

$$
T_{L}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right| ; p_{0},|\mathbf{p}| ; s\right)=\tau(s) g^{[L]}\left(p_{0}^{\prime},\left|\mathbf{p}^{\prime}\right|\right) g^{[L]}\left(p_{0},|\mathbf{p}|\right)
$$

with

$$
\begin{gathered}
{[\tau(s)]^{-1}=\left[\lambda^{[L]}(s)\right]^{-1}+h(s),} \\
h(s)=\sum_{\text {coupled } L} h_{L}(s)=-\frac{i}{4 \pi^{3}} \int d k_{0} \int|\mathbf{k}|^{2} d|\mathbf{k}| \sum_{L}\left[g^{[L]}\left(k_{0},|\mathbf{k}|\right)\right]^{2} S\left(k_{0},|\mathbf{k}| ; s\right)
\end{gathered}
$$

$g^{[L]}$ - the model function, $\lambda^{\left[L^{\prime} L\right]}(s)$ - a model parameter.

The relativistic generalization of the NR Graz-II and Paris separable kernel:

- Graz-II: ${ }^{1} S_{0}^{+}$- rank 2, ${ }^{3} S_{1}^{+}-{ }^{3} D_{1}$ - rank 3
- Paris-1,2: ${ }^{1} S_{0}^{+}$- rank 3, ${ }^{3} S_{1}^{+}-{ }^{3} D_{1}$ - rank 4

Results for ${ }^{1} S_{0}^{+}$channel

	Exp.	Graz-II	Paris-1	Paris-2
$a(\mathrm{fm})$	-23.748	-23.77	-23.72	-23.72
$r_{0}(\mathrm{fm})$	2.75	2.683	2.810	2.817

Results for ${ }^{3} S_{1}^{+}-{ }^{3} D_{1}$ channels

	Exp.	Graz-II	Graz-II	Graz-II	Paris-1	Paris-2
$p_{d}(\%)$		4	5	6	5.77	5.77
$a(\mathrm{fm})$	5.424	5.419	5.420	5.421	5.426	5.413
$r_{0}(\mathrm{fm})$	1.759	1.780	1.779	1.778	1.775	1.765
$E_{d}(\mathrm{MeV})$	2.2246	2.2254	2.2254	2.2254	2.2246	2.2250

Partial-wave three-nucleon functions

$$
\Psi_{\lambda L}^{(a)}\left(p_{0},|\mathbf{p}|, q_{0},|\mathbf{q}| ; s\right)=g^{(a)}\left(p_{0},|\mathbf{p}|\right) \tau^{(a)}\left[\left(\frac{2}{3} \sqrt{s}+q_{0}\right)^{2}-\mathbf{q}^{2}\right] \Phi_{\lambda L}^{(a)}\left(q_{0},|\mathbf{q}| ; s\right)
$$

System of the integral equations

$$
\begin{gathered}
\Phi_{\lambda L}^{(a)}\left(q_{0},|\mathbf{q}| ; s\right)=\frac{i}{4 \pi^{3}} \sum_{a^{\prime} \lambda^{\prime}} \int_{-\infty}^{\infty} d q_{0}^{\prime} \int_{0}^{\infty} \mathbf{q}^{\prime 2} d\left|\mathbf{q}^{\prime}\right| Z_{\lambda \lambda^{\prime}}^{\left(a a^{\prime}\right)}\left(q_{0}, q ; q_{0}^{\prime},\left|\mathbf{q}^{\prime}\right| ; s\right) \\
\frac{\tau^{\left(a^{\prime}\right)}\left[\left(\frac{2}{3} \sqrt{s}+q_{0}^{\prime}\right)^{2}-\mathbf{q}^{\prime 2}\right]}{\left(\frac{1}{3} \sqrt{s}-q_{0}^{\prime}\right)^{2}-\mathbf{q}^{\prime 2}-m^{2}+i \epsilon} \Phi_{\lambda^{\prime} L}^{\left(a^{\prime}\right)}\left(q_{0}^{\prime},\left|\mathbf{q}^{\prime}\right| ; s\right)
\end{gathered}
$$

with effective kernels of equation

$$
\begin{gathered}
Z_{\lambda \lambda^{\prime}}^{\left(a a^{\prime}\right)}\left(q_{0},|\mathbf{q}| ; q_{0}^{\prime},\left|\mathbf{q}^{\prime}\right| ; s\right)=C_{\left(a a^{\prime}\right)} \int d \cos \vartheta_{\mathbf{q \mathbf { q } ^ { \prime }}} K_{\lambda \lambda^{\prime} L}^{\left(a a^{\prime}\right)}\left(|\mathbf{q}|,\left|\mathbf{q}^{\prime}\right|, \cos \vartheta_{\mathbf{q q}^{\prime}}\right) \\
\frac{g^{(a)}\left(-q_{0} / 2-q_{0}^{\prime},\left|\mathbf{q} / 2+\mathbf{q}^{\prime}\right|\right) g^{\left(a^{\prime}\right)}\left(q_{0}+q_{0}^{\prime} / 2,\left|\mathbf{q}+\mathbf{q}^{\prime} / 2\right|\right)}{\left(\frac{1}{3} \sqrt{s}+q_{0}+q_{0}^{\prime}\right)^{2}-\left(\mathbf{q}+\mathbf{q}^{\prime}\right)^{2}-m_{N}^{2}+i \epsilon}
\end{gathered}
$$

Singularities

Poles from one-particle propagator

$$
q_{1,2}^{0 \prime}=\frac{1}{3} \sqrt{s} \mp\left[E_{\left|\mathbf{q}^{\prime}\right|}-i \epsilon\right]
$$

Poles from propagator in Z-function

$$
q_{3,4}^{0 \prime}=-\frac{1}{3} \sqrt{s}-q^{0} \pm\left[E_{\left|\mathbf{q}^{\prime}+\mathbf{q}\right|}-i \epsilon\right]
$$

Poles from Yamaguchi-functions

$$
q_{5,6}^{0 \prime}=-2 q^{0} \pm 2\left[E_{\left|\frac{1}{2} \mathbf{q}^{\prime}+\mathbf{q}\right|, \beta}-i \epsilon\right]
$$

and

$$
q_{7,8}^{0 \prime}=-\frac{1}{2} q^{0} \pm \frac{1}{2}\left[E_{\left|\mathbf{q}^{\prime}+\frac{1}{2} \mathbf{q}\right|, \beta}-i \epsilon\right]
$$

Cuts from two-particle propagator τ

$$
q_{9,10}^{0 \prime}= \pm \sqrt{q^{\prime 2}+4 m^{2}}-\frac{2}{3} \sqrt{s} \quad \text { and } \quad \pm \infty
$$

Poles from two-particle propagator τ

$$
q_{11,12}^{0 \prime}= \pm \sqrt{q^{\prime 2}+4 M_{d}^{2}}-\frac{2}{3} \sqrt{s}
$$

Method of solution

- Wick-rotation procedure: $q_{0} \rightarrow i q_{4}$
- The Gaussian quadrature with $N_{1} \times N_{2}\left[q_{4} \times|\mathbf{q}|\right]$ grid

$$
\begin{aligned}
& q_{4}=(1+x) /(1-x) \\
& |\mathbf{q}|=(1+y) /(1-y)
\end{aligned}
$$

- Iteration method to obtain the triton binding energy

$$
\left.\lim _{n \rightarrow \infty} \frac{\Phi_{n}(s)}{\Phi_{n-1}(s)}\right|_{s=M_{B}^{2}}=1
$$

Triton binding energy (MeV)

Graz-II 4	8.628
Graz-II 5	8.223
Graz-II 6	7.832
Paris-1	7.545
Exp.	8.48

Electromagnetic form factors of three-nucleon systems:

$$
\begin{aligned}
& 2 F_{\mathrm{C}}\left({ }^{3} \mathrm{He}\right)=\left(2 F_{\mathrm{C}}^{p}+F_{\mathrm{C}}^{n}\right) F_{1}-\frac{2}{3}\left(F_{\mathrm{C}}^{p}-F_{\mathrm{C}}^{n}\right) F_{2}, \\
& F_{C}\left({ }^{3} \mathrm{H}\right)=\left(2 F_{\mathrm{C}}^{n}+F_{\mathrm{C}}^{p}\right) F_{1}+\frac{2}{3}\left(F_{\mathrm{C}}^{p}-F_{\mathrm{C}}^{n}\right) F_{2}, \\
& \mu\left({ }^{3} \mathrm{He}\right) F_{\mathrm{M}}\left({ }^{3} \mathrm{He}\right)=\mu_{n} F_{\mathrm{M}}^{n} F_{1}+\frac{2}{3}\left(\mu_{n} F_{\mathrm{M}}^{n}+\mu_{p} F_{\mathrm{M}}^{p}\right) F_{2}+\frac{4}{3}\left(F_{\mathrm{M}}^{p}-F_{\mathrm{M}}^{n}\right) F_{3}, \\
& \mu\left({ }^{3} \mathrm{H}\right) F_{\mathrm{M}}\left({ }^{3} \mathrm{H}\right)=\mu_{p} F_{\mathrm{M}}^{p} F_{1}+\frac{2}{3}\left(\mu_{n} F_{\mathrm{M}}^{n}+\mu_{p} F_{\mathrm{M}}^{p}\right) F_{2}+\frac{4}{3}\left(F_{\mathrm{M}}^{n}-F_{\mathrm{M}}^{p}\right) F_{3},
\end{aligned}
$$

Electric and magnetic form factors of the proton and neutron $F_{\mathrm{C}, \mathrm{M}}^{p, n}$.

Impulse approximation:

$$
F_{i}(Q)=\int d^{4} p \int d^{4} q \quad G_{1}^{\prime}\left(k_{1}^{\prime}\right) G_{1}\left(k_{1}\right) G_{2}\left(k_{2}\right) G_{3}\left(k_{3}\right) f_{i}\left(p, q, q^{\prime} ; P, P^{\prime}\right)
$$

Nucleon propagators:

$$
\begin{aligned}
& G_{i}\left(k_{1}\right)=\left[k_{i}^{2}-m_{N}^{2}+i \epsilon\right]^{-1} \\
& G_{1}^{\prime}\left(q_{0}^{\prime}, q^{\prime}\right)=\left[\left(\frac{1}{3} \sqrt{s}-q_{0}^{\prime}\right)^{2}-\mathbf{q}^{\prime 2}-m_{N}^{2}+i \epsilon\right]^{-1}
\end{aligned}
$$

Three-nucleon vertex functions:

$$
\begin{aligned}
& f_{1}=\sum_{i=1}^{3} \Psi_{i}^{*}(p, q ; P) \Psi_{i}\left(p, q^{\prime} ; P^{\prime}\right) \\
& f_{2}=-3 \Psi_{1}^{*}(p, q ; P) \Psi_{2}\left(p, q^{\prime} ; P^{\prime}\right) \\
& f_{3}=\Psi_{3}^{*}(p, q ; P) \Psi_{3}\left(p, q^{\prime} ; P^{\prime}\right)
\end{aligned}
$$

Functions Ψ_{i} are the definite combinations of the partial state functions.

The Breit reference system

$$
\begin{equation*}
Q=(0, \mathbf{Q}), \quad P=\left(E_{B},-\frac{\mathbf{Q}}{2}\right), \quad P^{\prime}=\left(E_{B}, \frac{\mathbf{Q}}{2}\right), \tag{1}
\end{equation*}
$$

with $E_{B}=\sqrt{\mathbf{Q}^{2} / 4+s}, \eta=\mathbf{Q}^{2} / 4 s, s=M_{3 N}^{2}$.

$$
\begin{array}{lll}
P=\mathrm{L} P_{c . m .}, & p=\mathrm{L} p_{c . m .}, & q=\mathrm{L} q_{c . m}, \\
P^{\prime}=\mathrm{L}^{-1} P_{c . m .}^{\prime}, & p^{\prime}=\mathrm{L}^{-1} p_{c . m .}^{\prime}, & q^{\prime}=\mathrm{L}^{-1} q_{c . m}^{\prime}
\end{array}
$$

The explicit form of the transformation L can be obtained by using (1). Let us assume the boost of the system to be along the Z axis:

$$
\mathrm{L}=\left(\begin{array}{cccc}
\sqrt{1+\eta} & 0 & 0 & -\sqrt{\eta} \tag{2}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\sqrt{\eta} & 0 & 0 & \sqrt{1+\eta}
\end{array}\right)
$$

Relation of the arguments of initial and final $3 N$ functions:

$$
\begin{align*}
& q_{0}^{\prime}=(1+2 \eta) q_{0}-2 \sqrt{\eta} \sqrt{1+\eta} q_{z}+\frac{2}{3} \sqrt{\eta} Q \tag{3}\\
& q_{x}^{\prime}=q_{x} \quad q_{y}^{\prime}=q_{y} \\
& q_{z}^{\prime}=(1+2 \eta) q_{z}-2 \sqrt{\eta} \sqrt{1+\eta} q_{0}-\frac{2}{3} \sqrt{1+\eta} Q
\end{align*}
$$

here $q_{z}=q \cos \theta_{q Q}$ is the projection of momentum \mathbf{q} onto the Z axis

Static approximation (SA):

$$
q_{0}^{\prime}=q_{0}, \quad \mathbf{q}^{\prime}=\mathbf{q}-\frac{2}{3} \mathbf{Q}
$$

Propagator and final function:

$$
\begin{aligned}
& G_{1}^{\prime}\left(q_{0}^{\prime}, q^{\prime}\right) \rightarrow\left[\left(\frac{1}{3} \sqrt{s}-q_{0}\right)^{2}-\mathbf{q}^{2}-\frac{2}{3} \mathbf{q} \cdot \mathbf{Q}-\frac{4}{9} \mathbf{Q}^{2}-m_{N}^{2}+i \epsilon\right]^{-1} \\
& \Psi_{i}\left(p_{0}, p, q_{0}^{\prime}, q^{\prime}\right) \rightarrow \Psi_{i}\left(p_{0}, p, q_{0},\left|\mathbf{q}-\frac{2}{3} \mathbf{Q}\right|\right)
\end{aligned}
$$

with $\mathbf{q} \cdot \mathbf{Q}=q Q \cos \theta_{q Q}$.
The poles of G_{1}^{\prime} on q_{0} do not cross the imaginary q_{0} axis and always stay in the second and fourth quadrants. In this case, the Wick rotation procedure $q_{0} \rightarrow i q_{4}$ can be applied.

Beyond the SA:

1. Exact propagator

$$
\begin{aligned}
& G_{1}^{\prime}=\left[q_{0}^{2}+\frac{2}{3} \sqrt{s}(1+6 \eta) q_{0}+4 \sqrt{1+\eta} \sqrt{s} \sqrt{\eta} q_{z}-\frac{8}{3} \eta s+\frac{1}{9} s-\mathbf{q}^{2}-m_{N}^{2}+i \epsilon\right] \\
& \Psi_{i}\left(p_{0}, p, q_{0}^{\prime}, q^{\prime}\right) \rightarrow \Psi_{i}\left(p_{0}, p, q_{0},\left|\mathbf{q}-\frac{2}{3} \mathbf{Q}\right|\right) .
\end{aligned}
$$

For any $t=-Q^{2}>-Q_{\min }^{2}=2 / 3 \sqrt{s}\left(3 m_{N}-\sqrt{s}\right)$ the pole of G_{1}^{\prime} on q_{0} crosses the imaginary q_{0} axis and appears in the third quadrant.

Beyond the SA:

2. Additional term from residue inside the contour of integration

Using the Cauchy theorem, one can transform the integrals over p_{0}, q_{0} as follows:

$$
\begin{align*}
& \int_{-\infty}^{\infty} d p_{0} \int_{-\infty}^{\infty} d q_{0} \int_{0}^{\infty} d q \int_{-1}^{1} d y \ldots f\left(p_{0}, q_{0}, p, q, x, y\right)= \tag{4}\\
& -\int_{-\infty}^{\infty} d p_{4} \int_{-\infty}^{\infty} d q_{4} \int_{0}^{\infty} d q \int_{-1}^{1} d y \ldots f\left(i p_{4}, i q_{4}, p, q, x, y\right) \\
& +2 \pi \underset{q_{0}=q_{0}^{(2)}}{\operatorname{Res}} \int_{-\infty}^{\infty} d p_{4} \int_{q_{\min }}^{q_{\max }} d q \int_{y_{\min }}^{1} d y \ldots f\left(i p_{4}, q_{0}^{(2)}, p, q, x, y\right)
\end{align*}
$$

where (...) means the two-fold integral $\int_{0}^{\infty} d p \int_{-1}^{1} d x$ and

$$
\begin{equation*}
q_{0}^{(1,2)}=\frac{\sqrt{s}}{3}(1+6 \eta) \pm \sqrt{4 \eta(1+\eta) s-4 \sqrt{s} \sqrt{\eta} \sqrt{1+\eta} q y+\mathbf{q}^{2}+m_{N}^{2}} \tag{5}
\end{equation*}
$$

are the simple poles of the propagator G_{1}^{\prime}.

Beyond the SA:

3. Final function arguments transformation

Remembering that the BSF solutions are known for real values of q_{4} only, the following assumption was made:

$$
\Psi\left(p_{0}, p, q_{0}^{\prime}, q^{\prime}\right) \rightarrow g\left(p_{0}, p\right) \tau\left[\left(\frac{2}{3} \sqrt{s}+q_{0}^{(2)}\right)^{2}-\overline{\mathbf{q}}^{\prime 2}\right] \Phi\left(0, \bar{q}^{\prime}\right)
$$

where value \bar{q}^{\prime} is obtained using (3) with $q_{0}=q_{0}^{(2)}$.
The expansion of the function $\Phi\left(q_{4}^{\prime}, q^{\prime}\right)$ up to the first order of the parameter η :

$$
\begin{aligned}
\Phi\left(i q_{4}^{\prime}, q^{\prime}\right)=\Phi\left(i q_{4},\left|\mathbf{q}-\frac{2}{3} \mathbf{Q}\right|\right)+ & {\left[C_{q_{4}} \frac{\partial}{\partial q_{4}} \Phi_{j}\left(i q_{4}, q\right)\right]_{q=\left|\mathbf{q}-\frac{2}{3} \mathbf{Q}\right|} } \\
+ & {\left[C_{q} \frac{\partial}{\partial q} \Phi_{j}\left(i q_{4}, q\right)\right]_{q=\left|\mathbf{q}-\frac{2}{3} \mathbf{Q}\right|} }
\end{aligned}
$$

where

$$
\begin{aligned}
& C_{q_{4}}=-i\left(2 i \eta q_{4}-2 \sqrt{\eta} \sqrt{1+\eta} q \cos \theta_{q Q}+\frac{2}{3} \sqrt{\eta} Q\right) \\
& C_{q}=\left(2 \eta q \cos \theta_{q Q}-2 i \sqrt{\eta} \sqrt{1+\eta} q_{4}-\frac{2}{3}(\sqrt{1+\eta}-1) Q\right) \cos \theta_{q Q}
\end{aligned}
$$

Graz-II relativistic kernel

Paris relativistic kernel

Summary

- the relativistic three-nucleon vertex functions were found by solving the BSF system of equations
- the charge and magnetic EM form factors of the $3 N$ systems were calculated
- the static approximation and relativistic corrections were investigated How to improve
- beyond the RIA: two- and three-nucleon EM currents
- no $3 N$ forces - the phenomenological $2 N$ kernel from the $2 N$ observables is used (not included the $3 N$ observables)
The way to investigate
- the unbound $3 N$ systems: $3 N, N d$ scattering states
- the $4 N$ Yakubovsky equation with $2 N \mathrm{BS}$ solution

