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Research Motivation

Conscious state

Our work is motivated by the idea that understanding the dynamics of brain
waves in the brain is critical to identify, monitor, and ultimately control brain 
states transitions.
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~100 billion (~1011) neurons and ~100 trillion (1014) synapses in human brain.
Recent estimate: 86 billion neurons, 16.3 billion in the cerebral cortex, and 69 
billion in the cerebellum.
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EEG: electroencephalography

EEG is an electrophysiological monitoring 
method to record electrical activity of 
the brain. It is typically noninvasive, with 
the electrodes placed along the scalp, 
although invasive electrodes are 
sometimes used, as 
in electrocorticography (ECoG).

http://www.schalklab.org/research/brain-computer-interfacing
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Richard Caton (1875): reported 
electrical activities of rabbits’ and 
monkeys’ brains

Adolf Beck (1890): published 
electrical activities of rabbits’ and 
dogs’ brains

Hans Berger (1924): recorded the 
first human EEG. 

Hans Berger (1873-1941) 

EEG: electroencephalography
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http://www.scholarpedia.org/article/Local_field_potential

The Local Field Potential (LFP) is the electric 
potential recorded around neurons, typically 
using micro-electrodes (metal, silicon, etc).

LFPs differ from the electroencephalogram 
(EEG), which is recorded at the surface of 
the scalp, and with macro-electrodes. LFPs 
are recorded in depth, from within the 
cortical tissue.

Besides their invasive aspect, LFPs also 
sample relatively localized populations of 
neurons, separated by a few hundred 
microns. In contrast, the EEG samples much 
larger populations of neurons.



The electric potential generated by 
an individual neuron is far too 
small to be picked up by EEG.

EEG therefore reflects the group 
synchronous activities of the 
neurons. 

Scalp EEG shows oscillations at a 
variety of frequencies (Fourier 
transform can be applied).
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Delta: Deep, dreamless sleep (non-REM)

Ned Herrmann, https://www.scientificamerican.com/article/what-is-the-function-of-t-1997-12-22/

Brainwaves



Delta: Deep, dreamless sleep (non-REM)

Theta: Light sleep (REM), dream, deep meditation. 
“A person who has taken time off from a task and begins to daydream is 
often in a theta brainwave state. A person who is driving on a freeway, and 
discovers that they can't recall the last five miles, is often in a theta state.”
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Delta: Deep, dreamless sleep (non-REM)

Theta: Light sleep (REM), dream, deep meditation. 
“A person who has taken time off from a task and begins to daydream is 
often in a theta brainwave state. A person who is driving on a freeway, and 
discovers that they can't recall the last five miles, is often in a theta state.”

Alpha: eyes closed or brain not actively engaged to external stimuli, light 
meditation. May be a conduit for global brain communication.
“A person who has completed a task and sits down to rest is often in an 
alpha state. A person who takes time out to reflect or meditate is usually in 
an alpha state. A person who takes a break from a conference and walks in 
the garden is often in an alpha state.”
 
Beta: engaged state.
“A person in active conversation would be in beta. A debater would be in 
high beta. A person making a speech, or a teacher, or a talk show host 
would all be in beta when they are engaged in their work.”

Gamma: sensory processing. Local brain interaction.

Ned Herrmann, https://www.scientificamerican.com/article/what-is-the-function-of-t-1997-12-22/
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t

T: period (s) f≡1/T: frequency (Hz)

Oscillation and Wave



A wave (oscillating signal) can be 
mapped to a circle on a complex plane 
(Hilbert transform).

Θ is the phase of the oscillator, and |z| 
is the amplitude of the oscillator.

Amplitude and Phase
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How to Distinguish Consciousness from Unconsciousness?

Lee, UnCheol Mashour, George

Center for Consciousness Science, University of Michigan



G Mashour et al., Anesthesiology (2011)

How to Distinguish Consciousness from Unconsciousness?



How to Prevent Intraoperative Awareness?

Anesthesia awareness rate may approach 1% in high risk patients.
BIS (Bi-Spectral Index) is a popular monitoring tool, but not always accurate.



UC Lee et al., Anesthesiology 2013

Conscious Unconscious

Directionality Changes in EEG Functional Networks

Front-Back directionality may be a neural correlate of consciousness.

Conscious Unconscious

28



Model: Brain as a Coupled Oscillator System
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Coupled Oscillator System

Arthur T. Winfree, 1967
Yoshiki Kuramoto, 1975

We consider neural masses as oscillators
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Kuramoto/Stuart-Landau models are general/canonical models of the oscillators, 
and have general properties which more complex models also have.

Stuart-Landau Model

Kuramoto Model

J-Y Moon, PLOS Comp. Biol. 2015

Wilson-Cowan Model

Canonical Coupled Oscillator Models

ሶ𝑍𝑗 𝑡 = 𝜆𝑗 + 𝑖𝜔𝑗 − 𝑍𝑗 𝑡
2

𝑍𝑗 𝑡 + 𝑆 

𝑘=1

𝑁

𝐾𝑗𝑘𝑍𝑘 𝑡 − 𝜏𝑗𝑘 ,  𝑗 = 1,2, … , 𝑁

ሶ𝜃𝑗 𝑡 = 𝜔𝑗 + 𝑆 

𝑘=1

𝑁

𝐾𝑗𝑘 sin 𝜃𝑘 𝑡 − 𝜏𝑗𝑘 − 𝜃𝑗 𝑡 , 𝑗 = 1,2, … , 𝑁

ሶ𝐸𝑗 𝑡 = −𝐸𝑗 + 𝐹 𝐶𝐸𝐸𝐸𝑗 − 𝐶𝐼𝐸𝐼𝑗 + 𝑃𝑗 + 𝑆 

𝑘=1

𝑁

𝐾𝑗𝑘𝐸𝑘

ሶ𝐼𝑗 𝑡 = −𝐼𝑗 + 𝐹 𝐶𝐸𝐼𝐸𝑗 − 𝐶𝐼𝐼𝐼𝑗 + 𝑄𝑗 , 𝐹 𝑥 = 1 − 𝑒−𝑥 , 𝑗 = 1,2, … , 𝑁.



Set of all oscillators

Kuramoto model

Zetterberg model David-Friston model

Willson-Cowan model
……

ሶ𝜃𝑗 𝑡 = 𝜔𝑗 + 𝑆 

𝑘=1

𝑁

𝐾𝑗𝑘 sin 𝜃𝑘 𝑡 − 𝜏𝑗𝑘 − 𝜃𝑗 𝑡

There exists mappings from all oscillators to the Kuramoto model, as a first-order approximation.
There exists mappings from some oscillators to the Stuart-Landau model, as the next-order appx. 

Hopf bifurcationSaddle-node bif.
Homoclinic bif.

Infinite period bif.

Kuramoto/ Stuart-Landau model are the canonical models of oscillators.
If we can show that the K. model and S.-L. model yield a specific property,

it suggests that other oscillators can possibly yield that property.

Hoppensteadt and Izhikevich, Springer, 1997

Hodgkin-Huxley model

FitzHugh–Nagumo model
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Kuramoto Model

ሶ𝜃𝑗 𝑡 = 𝜔𝑗 + 𝐾 

𝑘=1
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𝐴𝑗𝑘 sin 𝜃𝑘 𝑡 − 𝜏 − 𝜃𝑗 𝑡 , 𝑗 = 1,2, … , 𝑁.
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ሶ𝑍𝑗 𝑡 = 𝜆𝑗 + 𝑖𝜔𝑗 − 𝑍𝑗 𝑡
2

𝑍𝑗 𝑡 + 𝐾 

𝑘=1

𝑁

𝐴𝑗𝑘𝑍𝑘 𝑡 − 𝜏 ,  𝑗 = 1,2, … , 𝑁

ሶ𝑟𝑗 𝑡 = 𝜆𝑗 − 𝑟𝑗 𝑡
2

𝑟𝑗 𝑡 + 𝐾 

𝑘=1

𝑁

𝐴𝑗𝑘𝑟𝑘𝑐𝑜𝑠 θ𝑘 𝑡 − 𝜏 − θ𝑗 , 

ሶθ𝑗 𝑡 = ω𝑗 + 𝐾 

𝑘=1

𝑁

𝐴𝑗𝑘

𝑟𝑘

𝑟𝑗
𝑠𝑖𝑛 θ𝑘 𝑡 − 𝜏 − θ𝑗 ,  𝑗 = 1,2, … , 𝑁

Stuart-Landau Model
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ሶ𝑟𝑗 𝑡 = 𝜆𝑗 − 𝑟𝑗 𝑡
2

𝑟𝑗 𝑡

ሶ𝜃𝑗 𝑡 = 𝜔𝑗

ሶ𝑟𝑗 𝑡 = 𝜆𝑗 − 𝑟𝑗 𝑡
2

𝑟𝑗 𝑡

λ𝑗 > 0 λ𝑗 <  0

Moon et al., PLOS Comp. Biol. 2015

Stuart-Landau Model
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𝑍𝑗 𝑡
ሶ𝑟𝑗 𝑡 = 𝜆𝑗 − 𝑟𝑗 𝑡

2
𝑟𝑗 𝑡

ሶ𝜃𝑗 𝑡 = 𝜔𝑗
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Model: Results on Human Structural Brain Networks



Stuart-Landau Model

Kuramoto Model
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Every Oscillations Are Represented by Phase and Amplitude 

Oscillations

Phases

Relative Phase

1. Summarize phase of each oscillator in the system and define the system’s phase Θ :

𝑅𝑒𝑖Θ =
1

𝑁


𝑗=1

𝑁

𝑒𝑖𝜃𝑗

2. We subtract the system’s phase from each oscillator’s phase, and define it as relative phase φ𝑗  :

φ𝑗 = 𝜃𝑗 − Θ



Source 
(Phase lead)

Sink
(Phase lag)

when the network perturbed

D
ir

ec
ti

o
n

al
it

y

47

Model: Results on Human Structural Brain Networks



J-Y Moon et al., PLOS Comp. Biol. 2015

Model Analysis, Simulations, and Experimental Confirmations
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ሶ𝜃𝑗 𝑡 = 𝜔𝑗 +
𝑆

𝑁


𝑘=1

𝑁

𝐾𝑗𝑘 sin 𝜃𝑘 𝑡 − 𝜏𝑗𝑘 − 𝜃𝑗 𝑡 , 𝑗 = 1,2, … , 𝑁

≈ 𝜔𝑗 +
𝑆

𝑁


𝑘=1

𝑁

𝐾𝑗𝑘 sin 𝜃𝑘 − 𝜃𝑗 − 𝛽

𝜃𝑗 = 𝑠𝑖𝑛−1
𝑁

𝐾𝑗

Δ𝑗

𝑆𝑅
+ Θ − 𝛽

∵ 𝑆(ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠) →
𝑆𝐾𝑗

𝑁
(𝑖𝑛ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠)

≈ 𝜔𝑗 +
𝑆𝐾𝑗

𝑁2 

𝑘=1

𝑁

sin 𝜃𝑘 − 𝜃𝑗 − 𝛽

Δ𝑗 ≡ 𝜔𝑗 − Ω 𝑅𝑒𝑖Θ ≡
1

𝑁


𝑗=1

𝑁

𝑒𝑖𝜃𝑗

Using mean-field technique, we show the degree-
phase relationship.

T-W Ko, PRE 2008.
J-Y Moon, PLOS Comp. Biol. 2015.

Mathematical Results 1: Mean-Field Method

49



J-Y Moon et al., Sci. Rep. 2017

Macaque:
• 4 subjects 
• 128 ch. ECoG

Mouse:
• 9 subjects
• 38 ch. ECoG

Human:
• 6 subjects
• 128 ch. EEG

Information Flow Analysis across Different Species

50
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Patterns Strongest at the Peak Frequency 

Each species has a peak in its frequency distribution: 10~11 Hz for human, 8~9 
Hz for macaque, 7~8 Hz for mouse. The observed patterns were strongest at the 
peak frequency, suggesting that the global inter-regional communication may be 
strongest at the peak frequency of each species.
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Hypothesis: The majority of time windows will match the internal or external template. 

Control state (unconscious state)

Current Research: Identification of Internal/External Modes

53
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Identification of Internal/External Modes in EEG and ECoG Recordings

54

Hypothesis: The majority of time windows will match the internal or external template. 

Park, YoungJae



Validate Electrophysiologically Defined Modes against fMRI Reference States
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Hypothesis: EEG-defined modes are be associated with fMRI defined states

Kim, HyoungKyu
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Internal/External Brain Modes Transitions May Be a Crucial Mechanism

Hypothesis: Transitions between two dominant modes, internal & external mode, can 

be the crucial mechanism facilitating learning and memory.

Honey et al., Network Neurosci. 2017  Honey, Christopher
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Internal/External Brain Modes Transitions May Be a Crucial Mechanism

Hypothesis: Transitions between two dominant modes, internal & external mode, can 

be the crucial mechanism facilitating learning and memory.

Honey et al., Network Neurosci. 2017  

In external mode, we are biased towards external world.
In internal mode, we process information, and construct an internal model.
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Internal/External Brain Modes Transitions May Be a Crucial Mechanism

Hypothesis: Transitions between two dominant modes, internal & external mode, can 

be the crucial mechanism facilitating learning and memory.

Honey et al., Network Neurosci. 2017  

In external mode, we are biased towards external world.
In internal mode, we process information, and construct an internal model.

Again in external mode, we compare our model against external world.
Again in internal mode, we modify our model, triggered by the “mismatch”.

…
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Hypothesis: Large-scale cortical dynamics transition between two dominant modes, 

internal & external mode.

Characterize Internal (top-down) /External (Bottom-up) Modes Using EEG



ሶ𝑍𝑗 𝑡 = 𝜆𝑗 + 𝑖𝜔𝑗 − 𝑍𝑗 𝑡
2

𝑍𝑗 𝑡 + 𝑆 

𝑘=1

𝑁

𝐴𝑗𝑘 𝑍𝑘 𝑡 𝑒−𝑖𝛽 − 𝑍𝑗 𝑡 𝑔𝑒−𝑖𝛼 ,

 𝑗 = 1,2, … , 𝑁
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Idea: we can map how amplitude/phase dynamics are affected by diffusive coupling 

term in our model. 

Characterize Internal (top-down) /External (Bottom-up) Modes in Our Model

Woo et al., Chaos 2020

Stuart-Landau model with diffusive term

equivalent to 

ሶ𝑟𝑗 𝑡 = 𝜆𝑗 − 𝑟𝑗 𝑡
2

𝑟𝑗 𝑡 + 𝑆 

𝑘=1

𝑁

𝐴𝑗𝑘𝑟𝑘 𝑐𝑜𝑠 θ𝑘 − 𝛽 − θ𝑗 − 𝑟𝑗𝑔 cos 𝛼  , 

ሶθ𝑗 𝑡 = ω𝑗 + 𝑆 

𝑘=1

𝑁

𝐴𝑗𝑘

𝑟𝑘

𝑟𝑗
𝑠𝑖𝑛 θ𝑘 − 𝛽 − θ𝑗 + 𝑔 sin 𝛼 , 

 𝑗 = 1,2, … , 𝑁

Lee, HaeSung



Woo et al., Chaos 2020
61

Hypothesis: Both internal and external states will allow for both high & low-amplitude 

oscillations.

Characterize Internal (top-down) /External (Bottom-up) Modes in Our Model



1. Characterize Internal and External Brain Modes

• Characterize internal vs external modes in model
• Identify internal/external modes in EEG/ECoG, and against fMRI reference states

62
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Current Research



1. Characterize Internal and External Brain Modes

• Characterize internal vs external modes in model
• Identify internal/external modes in EEG/ECoG, and against fMRI reference states

• Determine conditions for mode transitions from model
• Determine triggers for internal-external mode transitions from experiments

2. Determine Mechanisms and Targets for Triggering Mode Switches

Current Research
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1. Characterize Internal and External Brain Modes

• Characterize internal vs external modes in model
• Identify internal/external modes in EEG/ECoG, and against fMRI reference states

• Determine conditions for mode transitions from model
• Determine triggers for internal-external mode transitions from experiments

2. Determine Mechanisms and Targets for Triggering Mode Switches

Current Research
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3. Compare Mode Transition Properties against Non-General Populations.
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General Population vs. ADHD (inattentive type)

General Population ADHD (inattentive type)

Participant #1

Participant #2

Participant #3

Participant #4

Cha, YoungHwa



Experiments Utilizing Simultaneous EEG/fMRI

66

Cha, YoungHwa Lee, YeJi Cho, MinSeoKim, HyoungKyu Park, YoungJae Lee, HaeSung



67

Experiments Utilizing Simultaneous EEG/fMRI:
gradCPT

Esterman et al., Cerebral Cortex 2013



68

Experiments Utilizing Simultaneous EEG/fMRI:
gradCPT

Esterman et al., Cerebral Cortex 2013
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Experiments Utilizing Simultaneous EEG/fMRI:
gradCPT

In the zone: external mode
Out of the zone: internal mode

Esterman et al., Cerebral Cortex 2013
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Ph.D. Candidate,
Lee, HaeSung

Ph.D. Candidate,
Nam, SeonHo
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Intern,
Cho, MinSeo
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Professor, Kang, Min-Suk
Professor, Hong, Seok-Jun
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Thank you

https://moonbrainlab.org
Joon.young.moon@gmail.com
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Directionality Change as a Common Metric for General Anesthesia

UC Lee et al., Anesthesiology 2013



J-Y Moon et al., Sci. Rep. 2017

Macaque

Structural network:

11 studies/71 parcels
(Young 1993)

Experimental data:

4 subjects/128 ch. ECoG
(http://neurotycho.org/)

Mouse

Structural network:

8 subjects/74 parcels
(constructed from Wu et al. 
2013)

Experimental data:

9 subjects/38 ch. ECoG
(Choi et al. from KIST)

Human

Structural network:

80 subjects/78 parcels
(Gong et al. 2009)

Experimental data:

6 subjects/128 ch. EEG
(U of Michigan)

Directionality Analysis across Different Species
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2-Mean Clustering of Human Resting State Example 

75

4-Mean Clustering of Human Resting State Example 



Oscillations

Phases

Phase Relationship Is Equivalent to Other Measures

Granger Causality Transfer EntropydPLI

1. Instantaneous Phase Difference (IPD): phase difference at t.

2. Directional Phase Lag Index (dPLIij): time average of sign of 
IPD captures the phase lead/lag relationship between i and j.

CJ Stam et al. NeuroImage 2012

If 0<dPLI≤1, i lead j.
If -1≤dPLI<0, i lag j.
In dPLI=0, neither i or j lead/lag.

dPLI of two signals i and j:

∆𝜑𝑖𝑗 𝑡 = 𝜑𝑖(𝑡) − 𝜑𝑗(𝑡)

𝑑𝑃𝐿𝐼𝑖𝑗 = < 𝑠𝑖𝑔𝑛 ∆𝜑𝑖𝑗(𝑡) >𝑡

Directional phase-lag index: dPLI



Characterize Internal/External Modes in Our Oscillator Model

Woo et al., Chaos 2020
77

Hypothesis: Both internal and external states will allow for both high & low-amplitude 

oscillations.



ሶ𝑍𝑗 𝑡 = 𝜆𝑗 + 𝑖𝜔𝑗 − 𝑍𝑗 𝑡
2

𝑍𝑗 𝑡 + 𝑆 

𝑘=1

𝑁

𝐴𝑗𝑘 𝑍𝑘 𝑡 𝑒−𝑖𝛽 − 𝑍𝑗 𝑡 𝑔𝑒−𝑖𝛼 ,

 𝑗 = 1,2, … , 𝑁
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Idea: we can map how amplitude/phase dynamics are affected by diffusive coupling 

term in our model. 

Characterize Internal/External Modes in Our Oscillator Model

Woo et al., Chaos 2020

Stuart-Landau model with diffusive term

equivalent to 

ሶ𝑟𝑗 𝑡 = 𝜆𝑗 − 𝑟𝑗 𝑡
2

𝑟𝑗 𝑡 + 𝑆 

𝑘=1

𝑁

𝐴𝑗𝑘𝑟𝑘 𝑐𝑜𝑠 θ𝑘 − 𝛽 − θ𝑗 − 𝑟𝑗𝑔 cos 𝛼  , 

ሶθ𝑗 𝑡 = ω𝑗 + 𝑆 

𝑘=1

𝑁

𝐴𝑗𝑘

𝑟𝑘

𝑟𝑗
𝑠𝑖𝑛 θ𝑘 − 𝛽 − θ𝑗 + 𝑔 sin 𝛼 , 

 𝑗 = 1,2, … , 𝑁

g

Lee, HaeSung
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