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Research Motivation

Our work is motivated by the idea that understanding the dynamics of brain
waves in the brain is critical to identify, monitor, and ultimately control brain
states transitions.
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Research Motivation

Our work is motivated by the idea that understanding the dynamics of brain
waves in the brain is critical to identify, monitor, and ultimately control brain
states transitions.
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Research Themes

I. Brain Waves

Il. Phase Patterns in Brain States

lIl. Phase Dynamics of Brain States



% Dendrites o Microtubule

Neurofibrils
Neurotransmitter.

Synaptic vesicles
Synapse (Axoaxoni

z ]
Synaptic cleft [
Axonal terminal /7

Receptor

Rough ER
(Nissl body)

Polyribosomes Node of Ranvier

(]
Ribosomes apse
. gatic) ]
Golgi apparatus '

Myelin Sheath

(Schwann cell)

Nucleus
Nucleolus
Membrane
Microtubule

Nucleus
(Schwann cell)

ondrion

Smooth ER

I Synapse £_#& ‘
(Axodendritic

£
X Microfilament
Microtubule
Axon

Dendrites
D
N
~100 billion (~10™) neurons and ~100 trillion (104 synapses in human brain.
Recent estimate: 86 billion neurons, 16.3 billion in the cerebral cortex, and 69
billion in the cerebellum.




% Dendrites o Microtubule

Neurofibrils
Neurotransmitter.

Synaptic vesicles
Synapse (Axoaxoni

z ]
Synaptic cleft [
Axonal terminal /7

Receptor

Rough ER
(Nissl body)

Polyribosomes Node of Ranvier

(]
Ribosomes apse
. -~ gatic) )
Golgi apparatus '

Nucleus
Nucleolus
Membrane
Microtubule £

ondrion e \ tbtd bt bbbt bbb bbb bbbt bbbt

Smooth ER 7

I Synapse £_#& ‘
(Axodendritic

\ )
~100 billion (~10™) neurons and ~100 trillion (104 synapses in human brain.
Recent estimate: 86 billion neurons, 16.3 billion in the cerebral cortex, and 69

billion in the cerebellum.






EEG: electroencephalography

EEG is an electrophysiological monitoring
method to record electrical activity of
the brain. It is typically noninvasive, with
the electrodes placed along the scalp,
although invasive electrodes are
sometimes used, as

in electrocorticography (ECoG).
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EEG: electroencephalography

EEG is an electrophysiological monitoring
method to record electrical activity of
the brain. It is typically noninvasive, with
the electrodes placed along the scalp,
although invasive electrodes are
sometimes used, as

in electrocorticography (ECoG).

EEG measures voltage fluctuations
resulting from neuronal activities of the
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EEG: electroencephalography

EEG is an electrophysiological monitoring
method to record electrical activity of
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resulting from neuronal activities of the
brain.

o

Y

/ \l \ A
l |': ’NWW W/\%QN/ \ "J;

http://www.schalklab.org/research/brain-computer-interfacing

/\\ M /,ﬂt(‘ ;
\/Jk\/'v'\vl ///
v/

‘&r\/‘\u\/w\ %

\ AV

\,/\;ly W.ﬁ’v\,_;g
~~ gt A
mmpm»f\/\N\»f“ A \/\A«,J‘v:\'\ /J“w \

sANNANMAA N A

A A% J\\ \M‘
AR A e




EEG: electroencephalography

Richard Caton (1875): reported
electrical activities of rabbits’ and
monkeys’ brains

Adolf Beck (1890): published
electrical activities of rabbits’ and
dogs’ brains

Hans Berger (1924): recorded the
first human EEG.

...............

Hans Berger (1873-1941)



LFP (local field potential)

The Local Field Potential (LFP) is the electric
potential recorded around neurons, typically
using micro-electrodes (metal, silicon, etc).
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LFP (local field potential)

The Local Field Potential (LFP) is the electric
potential recorded around neurons, typically
using micro-electrodes (metal, silicon, etc).
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LFP (local field potential)

The Local Field Potential (LFP) is the electric
potential recorded around neurons, typically
using micro-electrodes (metal, silicon, etc).
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Brainwaves .
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Brainwaves

The electric potential generated by
an individual neuron is far too
small to be picked up by EEG.

EEG therefore reflects the group
synchronous activities of the
neurons.

Scalp EEG shows oscillations at a
variety of frequencies (Fourier
transform can be applied).
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Brainwaves

Delta: Deep, dreamless sleep (non-REM)
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Ned Herrmann, https://www.scientificamerican.com/article/what-is-the-function-of-t-1997-12-22/



Brainwaves
Delta: Deep, dreamless sleep (non-REM)
Theta: Light sleep (REM), dream, deep meditation.
"A person who has taken time off from a task and begins to daydream is

often in a theta brainwave state. A person who is driving on a freeway, and
discovers that they can't recall the last five miles, is often in a theta state.”

Ned Herrmann, https://www.scientificamerican.com/article/what-is-the-function-of-t-1997-12-22/
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Brainwaves
Delta: Deep, dreamless sleep (non-REM)

Theta: Light sleep (REM), dream, deep meditation.

"A person who has taken time off from a task and begins to daydream is
often in a theta brainwave state. A person who is driving on a freeway, and
discovers that they can't recall the last five miles, is often in a theta state”

Alpha: eyes closed or brain not actively engaged to external stimuli, light
meditation.

"A person who has completed a task and sits down to rest is often in an
alpha state. A person who takes time out to reflect or meditate is usually in
an alpha state. A person who takes a break from a conference and walks in
the garden is often in an alpha state.”

Ned Herrmann, https://www.scientificamerican.com/article/what-is-the-function-of-t-1997-12-22/
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Brainwaves
Delta: Deep, dreamless sleep (non-REM)

Theta: Light sleep (REM), dream, deep meditation.

"A person who has taken time off from a task and begins to daydream is
often in a theta brainwave state. A person who is driving on a freeway, and
discovers that they can't recall the last five miles, is often in a theta state”

Alpha: eyes closed or brain not actively engaged to external stimuli, light
meditation.

"A person who has completed a task and sits down to rest is often in an
alpha state. A person who takes time out to reflect or meditate is usually in
an alpha state. A person who takes a break from a conference and walks in
the garden is often in an alpha state.”

Beta: engaged state.

"A person in active conversation would be in beta. A debater would be in
high beta. A person making a speech, or a teacher, or a talk show host
would all be in beta when they are engaged in their work.”

Ned Herrmann, https://www.scientificamerican.com/article/what-is-the-function-of-t-1997-12-22/

Delta

<4 Hz

Theta

4-7Hz

Alpha

7-12Hz

Beta

12-30 Hz

Gamma
30-50Hz



Brainwaves
Delta: Deep, dreamless sleep (non-REM)

Theta: Light sleep (REM), dream, deep meditation.

"A person who has taken time off from a task and begins to daydream is
often in a theta brainwave state. A person who is driving on a freeway, and
discovers that they can't recall the last five miles, is often in a theta state”

Alpha: eyes closed or brain not actively engaged to external stimuli, light
meditation. May be a conduit for global brain communication.

"A person who has completed a task and sits down to rest is often in an
alpha state. A person who takes time out to reflect or meditate is usually in
an alpha state. A person who takes a break from a conference and walks in
the garden is often in an alpha state.”

Beta: engaged state.

"A person in active conversation would be in beta. A debater would be in
high beta. A person making a speech, or a teacher, or a talk show host
would all be in beta when they are engaged in their work.”

Gamma: sensory processing. Local brain interaction.

Ned Herrmann, https://www.scientificamerican.com/article/what-is-the-function-of-t-1997-12-22/
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Oscillation and Wave

T: period (S) f=1/T: frequency (Hz)
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Amplitude and Phase
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A wave (oscillating signal) can be
mapped to a circle on a complex plane
(Hilbert transform).

@ is the phase of the oscillator, and |Z]
is the amplitude of the oscillator.
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Research Themes

|. Brain Waves
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Phase Patterns in Brain States

Phase Dynamics of Brain States



How to Distinguish Consciousness from Unconsciousness?

Center for Consciousness Science, University of Michigan

Ll
Lee, UnCheol Mashour, George
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How to Distinguish Consciousness from Unconsciousness?

Patient State | Device Features Reading Frontal Electroencephalography (EEG) Trace
Wakeful EEG £, | Amp, blinks 1,B,01 6,0
SEFys Twenties 26 Hz. %WWWWWWW‘
BIS High p ratio 96 ! W\
Entropy High entropy 97 S0pv
AAI !lat, T Aamp 81
NI EEG fband analysis A
ETAG Age-adjusted MAC 0 MAC
Sedated EEG o oscillations 1,8, T 8,0
SEFo;s High teens 19 Hz. EEG
BIS Low f ratio 78
Entropy High entropy 85 W}P W\vwn '#WWMWWWM
AAI Ting lat, | ing AAmp 45 50pv
NI EEG fband analysis B/C
ETAG Age-adjusted MAC 0.4 MAC
Unresponsive | EEG Spindles, K, 1f T0,0,8
SEFgs Low teens 14 Hz.
BIS Bispectral coherence 52 G
Entropy Entropy drop 43 ﬁl R
AAI Ting lat, | ing AAmp 30 \
NI EEG fband analysis D
ETAG Age-adjusted MAC 0.8 MAC
Surgically EEG Slow & waves, |f & dominance
Anesthetized SEFgs <12 Hz. 10 Hz.
BIS Bispectral coherence 42 | / ) (
Entropy Low entropy 38 U { |'V VMV WWWN K \f
AAI 7ing lat, | ing AAmp 22 | ! ‘
NI EEG fband analysis E
ETAG Age-adjusted MAC 1.3 MAC
Deeply EEG BS, isoelectricity Bursts & flat
Anesthetized | SEFss <2 Hz. (BS corrected) 2 Hz.
BIS High BSR 9
Entropy Burst suppression 8
AAI 7 latency, | Aamp 11
NI EEG fband analysis F
ETAG Age-adjusted MAC 2 MAC

G Mashour et al., Anesthesiology (2011)



How to Prevent Intraoperative Awareness?

Anesthesia awareness rate may approach 1% in high risk patients.
BIS (Bi-Spectral Index) is a popular monitoring tool, but not always accurate.




Directionality Changes in EEG Functional Networks

Front-Back directionality may be a neural correlate of consciousness.

Conscious

Ketamine Propofol
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Model: Brain as a Coupled Oscillator System
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We consider neural masses as oscillators

Model: Brain as a Coupled Oscillator System

Coupled Oscillator System

Arthur T. Winfree, 1967
Yoshiki Kuramoto, 1975



Model: Brain as a Coupled Oscillator System
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We consider neural masses as oscillators

Arthur T. Winfree, 1967
Yoshiki Kuramoto, 1975
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Canonical Coupled Oscillator Models

2 v Wilson-Cowan Model
5 = {4 +iw; |z } 7O +5 Y, Kpzil(t - ), j=12,..,N
k=1
e en e k=1

[;(©) = =L + F[CgiEj — Cyli + Q;], Flx]=1-¢7%), j=12..,N.

() Phase lead

Il

A

Stuart-Landau Model

dpLI

DO = o /. phase lag S
.WLW Z;i(t) = {/11' +lw; = |Zj(t)|2}zf(t) * Sz GAlE =) =12
e » phase lead =

1
Phase lag

Kuramoto Model

9(t)—(u1+52 esin (B(t — 1) — 6;(0),  j=12,..,N

Kuramoto/Stuart-Landau models are general/canonical models of the oscillators,
and have general properties which more complex models also have.

J-Y Moon, PLOS Comp. Biol. 2015



Set of all oscillators o ey ek

Zetterberg model David-Friston model FitzHugh—Nagumo model

Willson-Cowan model
\ \ \ / / /

_ Homoclinic bif. . .
sl e ki Hopf bifurcation
Infinite period bif.

\ N
\\ Z](t) = {/1] + l(L)] - |Z](t)|2}Z](t) + SZ Kijk(t - Tjk)
k=1

Kuramoto model

N
Bj(t) = Wj +S z I(jk sin (Qk(t — Tjk) - gj(t))

k=1

There exists mappings from all oscillators to the Kuramoto model, as a first-order approximation.
There exists mappings from some oscillators to the Stuart-Landau model, as the next-order appx.

Kuramoto/ Stuart-Landau model are the canonical models of oscillators.
If we can show that the K. model and S.-L. model yield a specific property,
it suggests that other oscillators can possibly yield that property.

Hoppensteadt and Izhikevich, Springer, 1997
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Kuramoto Model

Im
< ! e'” = cos @ +isin
- 1 ~
— > <ﬂ

0 coslr,a lTle

N
0;(t) = wj + K Z Ajesin (6, (t = 1) = 6;(8)),j = 1,2,...,N.
k=1

https://hdietert.github.io/static/kuramoto-animation/kuramoto.html

https://gereshes.com/2018/02/26/modeling-fireflies-in-sync/



https://hdietert.github.io/static/kuramoto-animation/kuramoto.html
https://gereshes.com/2018/02/26/modeling-fireflies-in-sync/

Kuramoto Model

< ! e'” = cos g + i sin g
K sin @
- 1 )Y ~
PER——2 A\ -
e os e

coupling
strength

0:(t) = w, +1<Z jesin (86 =) = 6;(0)),j = 1.2, .

chz:ge phase phase
connectivity of
phase | frequency matrix coupled
node

https://hdietert.github.io/static/kuramoto-animation/kuramoto.html

https://gereshes.com/2018/02/26/modeling-fireflies-in-sync/
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Stuart-Landau Model

N

: : 2 :

Z](t) = {/1] + la)j — |Z](t)| }Z](t) + KZ Aijk(t — T), ] = 1,2,...,N
k=1

N
i5©) = {4 = |5} 50 + K ) Aprcos(0,(t - ) - 0y),
k=1

N

. T,

0;(8) =y + K ) Ajkrjsin(ek(t ~1)-9), j=12.,N
k=1



Stuart-Landau Model

) 2
7(6) = {4 = [0} (® =Y 756 = {% - [5® 0

Hj(t) - a)j

(-
N
)

Moon et al., PLOS Comp. Biol. 2015 39



5(© = {4 =[O )5 ©

Bj(t) = (1)]

Zi(t) ={x +iw; - 1,0} 2,®)




N
i5©) = {4 =[O} 50 +5 ) Ky cos (8i(t = 73) - ),
N k=1

N
Z:0) = {1 +iw; = |ZOVZ:@©) +5 Y KnZi(t — i)
! {] ' : } : kzl e " Qj(t) =(U]+Sz ng%Sin(Bk(t—Tjk)—gj(t)) .
k=1 J

Moon et al., PLOS Comp. Biol. 2015 41




Set of all oscillators o ey ek

Zetterberg model David-Friston model FitzHugh—Nagumo model

Willson-Cowan model
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Kuramoto model

N
Bj(t) = Wj +S z I(jk sin (Qk(t — Tjk) - gj(t))

k=1

There exists mappings from all oscillators to the Kuramoto model, as a first-order approximation.
There exists mappings from some oscillators to the Stuart-Landau model, as the next-order appx.

Kuramoto/ Stuart-Landau model are the canonical models of oscillators.
If we can show that the K. model and S.-L. model yield a specific property,
it suggests that other oscillators can possibly yield that property.

Hoppensteadt and Izhikevich, Springer, 1997



Model: Results

on Human Structural Brain Networks
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Model: Results on Human Structural Brain Networks

= Kuramoto Model

_ % %%% Qj(t) = Wj + SZ K]k Sin (Qk(t — Tjk) — Qj(t))

) VOGO@?VOOOO e O%o% -I- Stuart-Landau Model
%,
) &Qcﬁﬂ' o OOOOOOOOOi 3% % a@

N
k=1

Tjk)
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Every Oscillations Are Represented by Phase and Amplitude

/ Oscillations
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Every Oscillations Are Represented by Phase and Amplitude

/ Oscillations
~ L., e
71\ . /
.'I:[\ "I_ .l{'./_\l'l, h
AR o T A N N A
\ II -'II_ I II'. \ |'II —_— it
\ \‘1; 0 f- \ :5\ / i
P Ll Al P '}’{I} J e’ =cosp+ising
"i sin @
N 0|cosg 1 Re
- |

Relative Phase

1. Summarize phase of each oscillator in the system and define the system’s phase O :

1 N
Rei® z_zeiej
N L

2. We subtract the system'’s phase from each oscillator’s phase, and define it as relative phase ¢; :

¢;=0;—-0



Model: Results on Human Structural Brain Networks

when the network perturbed

2\ Pay;,
.dw env

Tempora/

g

SHn®
SMA, -
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o Source
FGriang, R (Phase lead)
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Temporg|

Directionality
o

Sink
(Phase lag)
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Model Analysis, Simulations, and Experimental Confirmations

(a)

Analytic study

N

zj(t) = {‘1} + i‘-“; — |ZJ(t)|2] Z;(t) + SZ Kjkzk(t — Tjk)r
k=1

For
zj(t) on networks
with sufficient coupling
strength S
and small time delay tjk,

if
degree(m) > degree(n),
then
Izml > [znl,
and
phase(m) < phase(n).

J-Y Moon et al., PLOS Comp. Biol. 2015

(b)

Simulations with
model and brain networks

Sl ',1.,.‘_.
i s
lefiecees

Q
2}
© __
<
o

{
4

network
fffﬁ \
(;\\IA\\W@D
‘, \‘h/“;g‘
Z

g

I phase lead

(c)

Empirical validation from
human EEG

EEG

A

'

phase lag - -

(N



Mathematical Results 1: Mean-Field Method

Using mean-field technique, we show the degree-

phase relationship. For
z/'( t) on networks
' P with sufficient coupling strength S
6;(t) = wj + Nz Kji sin (Qk(t — ) — 0 (t))' J=12,..,N and small time delay 1,
k=1
N os
S _ if
=t Nkz_l Kii[sin(0)c — 6; = B)] degree(m) > degree(n),
then
SK;
~ w; + N_;Z[Sin(gk —6;—B)] phase(m) < phase(n).
k=1

* S(homogeneous) — TJ (inhomogeneous)

0; = sin KSR +0-p

T-W Ko, PRE 2008.

J-Y Moon, PLOS Comp. Biol. 2015. 49



Information Flow Analysis across Different Species

Human Macaque Mouse

High

Degree
{]

Low

Phase lead

Phase lag

Human: Macaque: Mouse:
* 6 subjects * 4 subjects 9 subjects
« 128 ch. EEG « 128 ch. ECoG * 38 ch. ECoG

J-Y Moon et al., Sci. Rep. 2017



Patterns Strongest at the Peak Frequency

Human Macaque Mouse

—
-
oy

L 0.8 L 0.8}
= ‘ L2 (=)
wn ! wn 0.6} wn
04 Q- A 0.4

0.2 Oy 0.2

\
. 8 10 12 0'26 8 10 12 @ 6 8 10
Frequency (Hz) Frequency (Hz) Frequency (Hz)

Each species has a peak in its frequency distribution: 10~11 Hz for human, 8~9
Hz for macaque, 7~8 Hz for mouse. The observed patterns were strongest at the
peak frequency, suggesting that the global inter-regional communication may be
strongest at the peak frequency of each species.
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Research Themes
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Current Research: Identification of Internal/External Modes

Hypothesis: The majority of time windows will match the internal or external template.

3
N

., relative phase
|

=l
N

N

Time:000.008

Time:000.044

Conscious state Control state (unconscious state)
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|dentification of Internal/External Modes in EEG and ECoG Recordings

Hypothesis: The majority of time windows will match the internal or external template.

EEG phase map
le— External mode —>}«Internal mode>f¢———— External mode ———>|Transient|

O%E9282499

2s
time

i 5 851

2s
time

Park, Younglae

Awake
Resting

Control
(Unconscious)
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Validate Electrophysiologically Defined Modes against fMRI Reference States

Hypothesis: EEG-defined modes are be associated with fMRI defined states

EEG-to-fMRI fMRI-to-EEG Kim, HyoungKyu
Internal External DMN FPN
mode mode activity activity

/‘j 4
- N \
)

Simultaneous
EEG
relative phase
S w— 2
N N

Simultaneous
fMRI

BOLD signal (z)

omm N
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Internal/External Brain Modes Transitions May Be a Crucial Mechanism

Hypothesis: Transitions between two dominant modes, internal & external mode, can
be the crucial mechanism facilitating learning and memory.

A

Internally biased mode
- Top-down drive strong

- Samples from internal model

Internally biased mode

- Supports pattern completion

Externally biased mode

AuA A A_‘

Time —>

Externally biased mode
- Bottom-up drive strong
- Samples from external world
- Supports new encoding

Mode
strength

_— 56
Honey et al., Network Neurosci. 2017 Honey, Christopher



Internal/External Brain Modes Transitions May Be a Crucial Mechanism

Hypothesis: Transitions between two dominant modes, internal & external mode, can
be the crucial mechanism facilitating learning and memory.

A

Internally biased mode
- Top-down drive strong

- Samples from internal model

Internally biased mode

- Supports pattern completion

Externally biased mode

anALA A‘

Time —>

Externally biased mode
- Bottom-up drive strong
- Samples from external world
- Supports new encoding

Mode
strength

In external mode, we are biased towards external world.
In internal mode, we process information, and construct an internal model.

57
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Internal/External Brain Modes Transitions May Be a Crucial Mechanism

Hypothesis: Transitions between two dominant modes, internal & external mode, can
be the crucial mechanism facilitating learning and memory.

A

Internally biased mode
- Top-down drive strong

- Samples from internal model

- Supports pattern completion

Externally biased mode

A_A ‘

Time ——>

Externally biased mode
- Bottom-up drive strong
- Samples from external world
- Supports new encoding

Mode
strength

In external mode, we are biased towards external world.
In internal mode, we process information, and construct an internal model.

Again in external mode, we compare our model against external world.
Again in internal mode, we modify our model, triggered by the “mismatch”.

58
Honey et al., Network Neurosci. 2017



Characterize Internal (top-down) /External (Bottom-up) Modes Using EEG

Hypothesis: Large-scale cortical dynamics transition between two dominant modes,

internal & external mode.

Analytical Computational Experimental
Model Simulation Analysis
() = {A + iwj — |7;(®)?|}z;(®) ade2 B Internal
N 'f""‘ ' mode
+SZ[Aijk(t —ty) — Zjdoe_mll ' 5-., I
k=1 3 -‘*~"- —
j=12,..,N. / g'"'
NP
am e B \ External
SR IEt B S
R T ) mode
LR ! —
"t of T FA —
T‘;"'; ﬂ}';..'."::.‘ .




Characterize Internal (top-down) /External (Bottom-up) Modes in Our Model

Idea: we can map how amplitude/phase dynamics are affected by diffusive coupling
term in our model.

Stuart-Landau model with diffusive term

Lee, HaeSung

]

N
Zi(t) = {3 + 1w, — |Z;®|} 2:(®) + z Az (e —|z,(D)ge=],
&

j=12..,N

equivalent to

T—

N
7j(t) = {/1- — |r-(t)|2 r-(t) + Sz Ajy1 [cos(ek —p - Gj) —{17g cos a|| ,

9 (t) = w; +SZ k—[sm(Gk ,B—Gj)+gsina],

j=12,..,N

60
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Characterize Internal (top-down) /External (Bottom-up) Modes in Our Model

Hypothesis: Both internal and external states will allow for both high & low-amplitude
oscillations.

Amplitude (6-16Hz)

Low High
p -----#-\ (a) : ,*\
-+ | Intemal EET ]

61
Woo et al., Chaos 2020



Current Research

1. Characterize Internal and External Brain Modes

. Characterize internal vs external modes in model

. |dentify internal/external modes in EEG/ECoG, and against fMRI reference states
EEG phase map

l¢— External mode —}«Internal mode->}«———— External mode ———>|Transient]

AL DU L L UL

25 .
time

i e 0
Lq 394 L ‘ S~y

Os

Awake
Resting

Control
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=l
N

relative phase
J N

N

2s . 25s
time
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Awake

Control
(Unconscious)

Current Research

1. Characterize Internal and External Brain Modes

. Characterize internal vs external modes in model

. |dentify internal/external modes in EEG/ECoG, and against fMRI reference states
EEG phase map

l«— External mode —{«Internal mode>}«——— External mode ——>|Transient]|

AGNERTEEY

2 time 25 11/2

AREEIRELEN

0Os 2s 2.5
time

Resting

relatlve ph

2. Determine Mechanisms and Targets for Triggering Mode Switches

. Determine conditions for mode transitions from model
Determine triggers for internal-external mode transitions from experiments
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Awake

Control
(Unconscious)

Current Research

1. Characterize Internal and External Brain Modes

. Characterize internal vs external modes in model

. |dentify internal/external modes in EEG/ECoG, and against fMRI reference states
EEG phase map

l«— External mode —{«Internal mode>}«——— External mode ——>|Transient]|

DSNESSLEY

2s 2.5
time

[TITTTITLLY

0Os 2s 2.5
time

Resting

relative phase

< e Y

N

2. Determine Mechanisms and Targets for Triggering Mode Switches

. Determine conditions for mode transitions from model
. Determine triggers for internal-external mode transitions from experiments

3. Compare Mode Transition Properties against Non-General Populations.
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General Population vs. ADHD (inattentive type)

General Population ADHD (inattentive type)

Participant #1 Participant #3

Participant #2 Participant #4
0.01S 0.01S

65



Experiments Utilizing Simultaneous EEG/fMRI

Lee, Ha'eSung Cha, YoungHwa Lee, Yeli Cho, MinSeo




Experiments Utilizing Simultaneous EEG/fMRI:
gradCPT

800 ms 800 ms

N2
<=

—

u

City trial City trial Mountain trial
(Respond) (Respond) (Withhold response)

Esterman et al., Cerebral Cortex 2013 ©7/
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Normalized RT Variability
[Absolute RT deviance (z-score)]

Experiments Utilizing Simultaneous EEG/fMRI:

gradCPT

800 ms 800 ms

N2
<=

—

u

Time (mins)

City trial City trial Mountain trial
(Respond) (Respond) (Withhold response)
- Variance Time Course (VTC)
] In the zone
(smoothed VTC)
/\ 0 Out of the zone
—~ \//\ (smoothed VTC)
== w .. . - Lapse
(] [ [(E RN . Correct
5 6 7 8  Esterman et al., Cerebral Cortex 2013 68
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Normalized RT Variability
[Absolute RT deviance (z-score)]

Experiments Utilizing Simultaneous EEG/fMRI:

gradCPT

800 ms 800 ms

N2
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u

A |I4

—

3

City trial
(Respond)

Mountain trial
(Withhold response)

City trial
(Respond)

In the zone: external mode
Out of the zone: internal mode

- Variance Time Course (VTC)

. In the zone
(smoothed VTC)

D Out of the zone
(smoothed VTC)

B Lapse
B Correct

s 5 5 7 5 Esterman et al., Cerebral Cortex 2013 ©9
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Thank you

https://moonbrainlab.org
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Directionality Change as a Common Metric for General Anesthesia

Table 2. Select Characteristics of Three Major Classes of General Anesthetics

Group 1 Group 2 Group 3
Explanatory Level (e.g., Propofol) (e.g., Ketamine) (e.g., Sevoflurane)
Molecular Major GABA receptor agonist? Yes No Yes
Neuroanatomic target Depression of the thalamus? Yes No Yes
Systems neuroscience  VLPO activation? Yes No Yes
Neurophysiology Increased alpha power? Yes No Yes
Information theory Inhibition of cortical feedback Yes Yes Yes

connectivity?

Group 1 anesthetics include primarily GABA, agonists such as propofol, etomidate, and thiopental. These drugs tend to be strong
hypnotics, but weak immobilizers and analgesics. Group 2 anesthetics include non-GABAergic drugs (such as ketamine, nitrous oxide)
that may antagonize the N-methyl-D-aspartate glutamatergic receptor. These drugs tend to be strong analgesics, but weak hypnotics
and immobilizers. Groups 3 anesthetics have a mixed profile of GABA, agonism, two-pore potassium channel agonism, and excitatory
neurotransmitter antagonism. These drugs—such as sevoflurane, isoflurane, and desflurane—are strong hypnotics and immobilizers.
Inhibition of cortical feedback connectivity is potentially a common mechanism of anesthetic-induced unconsciousness across all three
groups. VLPO contains neurons that are active during sleep.

GABA = y-aminobutyric acid; VLPO = ventrolateral preoptic nucleus.

UC Lee et al, Anesthesiology 2013



Directionality Analysis across Different Species

Human
Structural network:
80 subjects/78 parcels
(Gong et al. 2009)

Experimental data:

6 subjects/128 ch. EEG
(U of Michigan)

J-Y Moon et al.,, Sci. Rep. 2017

Macaque
Structural network:
11 studies/71 parcels
(Young 1993)
Experimental data:

4 subjects/128 ch. ECoG
(http://neurotycho.org/)

Mouse
Structural network:
8 subjects/74 parcels
(constructed from Wu et al.
2013)

Experimental data:

9 subjects/38 ch. ECoG
(Choi et al. from KIST)



2-Mean Clustering of Human Resting State Example

£ e

4-Mean Clustering of Human Resting State Example
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Directional phase-lag index: dPL/

dPLI of two signals j and j:
1. Instantaneous Phase Difference (/PD): phase difference at ¢
Ap;i(t) = @;(t) — @;(t)

2. Directional Phase Lag Index (dPL/): time average of sign of
IPD captures the phase lead/lag relationship between /and /.

dPLI;; =< Sign(Aq)ij(t)) >,

If 0<dPLI<1, i lead .
If -1<dPLI<O0, i lag .
In dPLI=0, neither  or j lead/lag.

CJ Stam et al. Neurolmage 2012
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Characterize Internal/External Modes in Our Oscillator Model

Hypothesis: Both internal and external states will allow for both high & low-amplitude
oscillations.

Amplitude (6-16Hz)
Low High

-

< @
\ £72 P

| Internal

o,
%
Vet 2
I
L4

v

.II. +

=

77
Woo et al., Chaos 2020



Characterize Internal/External Modes in Our Oscillator Model

Idea: we can map how amplitude/phase dynamics are affected by diffusive coupling

term in our model.

Stuart-Landau model with diffusive term

]
~

Z;(t)ge™

Z;(t) = {,1,- +iw; — |Zj(t)|2}zj(t) +S z Aj|Z (e P —
k=1
j=12,..,N

equivalent to

N
7 (t) = {Aj — |rj(t)|2 rj(t) + SZ Ajgery [cos(ek - B - Gj) —{ 779 cos a] ,
6 (t) = w; +SZ k—[sm(ek B — Gj) +gsina],

j=12,..,N

Woo et al., Chaos 2020

Lee, HaeSung
12

o 11.5

$

external-high

external-low

lead large 1.5
o 8
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< o 0.1 0.2 0.3 0.4
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