

비이시안 방법론을 통한 바이오 동역학 연구 DNA sliding protein의 DNA 위에서의 확산 동역학

Jae-Hyung Jeon (전재형) Department of Physics, POSTECH Asia Pacific Center for Theoretical Physics (APCTP) E-mail: jeonjh@gmail.com

apctp

APCTP-POSTECH Biophysics Summer School, July 5th, 2023

Basics of probability theory

Sum of p over all possible events in the probability space = $p(\mathbf{P}) + p(\mathbf{F}) + p(\mathbf{H}) + p(\mathbf{Z}) + p(\mathbf{G}) = 1$

Probability $p(\Sigma^c) = p(\Omega) + p(\mathcal{H}) + p(\mathcal{L}) + p(\mathcal{L})$

Basics of probability theory (2)

Joint probability: Probability that multiple events occur simultaneously.

p(A, B) = the joint probability that event "A" and event "B" occur simultaneously.

Basics of probability theory (3)

Joint probability: Probability that multiple events occur simultaneously.

p(try1="윷", try2="모") = 1*1/(16*16)=(1/16)*(1/16) ≃0.004

Basics of probability theory (4)

Conditional probability: Probability of an event, given that other events already occurred.

p(A|B) = the probability that event "A" occurs under the condition that event "B" was given.

Basics of probability theory (5)

Conditional probability: Probability of an event, given that other events already occurred.

Bayes' theorem

Thomas Bayes (1747–1760)

Presbyterian (장로교) minister Statistician & Philosopher

T. Bayes & Richard Prices (1763), An Essay towards solving a problem in the doctrine of chances

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Statistician & Philosopher

(Pf) Joint prob. $p(A, B) = p(A \cap B)$ = p(A|B) p(B)= p(B, A)= p(B|A) p(A) R. Prices (1723–1791)

Bayesianist's interpretation on probability

Bayesianist's interpretation on probability (2)

자동차가 1번 문 뒤에 있을 사전확률 (prior) 1/3 3번 문 열고난 후 사후확률(posterior) 1/2 (?)

Bayesianist's interpretation on probability (2)

 $P(H|D) = \frac{P(D|H)P(H)}{P(D)}$ 사전확률 P(H): 차가 어떤 문 뒤에 있을 확률 1/3D(데이터): 3번 문 뒤에 염소 있음(1) H = 1번 문 뒤에 차가 있음(2) H = 2번 문 뒤에 차가 있음가능도(likelihood) P(D|H=1)=1/2가능도(likelihood) P(D|H=2)=1

전체확률(evidence) P(D)=[P(D|H=1)+P(D|H=2)+P(D|H=3)]P(H)=1/2

사후확률(posterior) P(H=1|D)=1/3

사후확률(posterior) P(H=2|D)=2/3 사후확률(posterior) P(H=3|D)=0

Bayesianist's interpretation on probability (2)

전체확률(evidence) P(D)=[P(D|H=1)+P(D|H=2)+P(D|H=3)]P(H)=1/2

사후확률(posterior) P(H=1|D)=1/3 사후확률(posterior) P(H=2|D)=2/3 사후확률(posterior) P(H=3|D)=0

차가 2번 문 뒤에 있을 확률이 1번 문 뒤에 있을 확률의 2배! 선택을 바꾸는 게 유리함.

R ANNUAL REVIEWS

Annual Review of Biophysics Bayesian Inference: The Comprehensive Approach to Analyzing Single-Molecule Experiments

Colin D. Kinz-Thompson,^{1,2} Korak Kumar Ray,¹ and Ruben L. Gonzalez Jr.¹

¹Department of Chemistry, Columbia University, New York, New York 10027, USA; email: rlg2118@columbia.edu

²Department of Chemistry, Rutgers University-Newark, Newark, New Jersey 07102, USA

Annu. Rev. Biophys. 2021. 50:191-208

First published as a Review in Advance on February 3, 2021

Keywords

model selection, error propagation, scientific method, probability theory, kinetics, cryo-EM

Bayesian inference & applications in science

J.-H. Jeon

Bayes' theorem—revisited

$$P(\{\theta\}|D,M) = \frac{P(D|\{\theta\},M)P(\{\theta\}|M)}{P(D|M)}$$
Posterior prob
Evidence

The likelihood: The prob of observing a particular value of D in the experiment, given that a particular model with $\{\theta\}$ is true.

 $P(D|\{\theta\}, M) \equiv \mathcal{L}(\theta|D, M) \text{ or } \mathcal{L}(D|\theta, M)$

Maximum likelihood: $\mathcal{L}(\hat{\theta}_{MLE}|D, M)$ where $\hat{\theta}_{MLE} = \operatorname{argmax}_{\theta} \mathcal{L}(\theta|D, M)$

The prior: Knowledge about the model ($\{\theta\}$) before observing data D.

 $P(\{\theta_i\}|M) \equiv \pi(\boldsymbol{\theta})$

Bayes' theorem—revisited

$$P(\{\theta\}|D,M) = \frac{P(D|\{\theta\},M)P(\{\theta\}|M)}{P(D|M)}$$
Posterior prob
Evidence

The posterior: The prob that the given model with the parameter $\{\theta\}$ is true under the new observation *D*.

The evidence (=marginal likelihood): The prob that the observed D comes from the M, regardless of the parameter $\{\theta\}$.

$$P(D|M) = \int_{\Theta} \mathcal{L}(\hat{\boldsymbol{\theta}}_{MLE}|D, M) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

Bayesian model inference

There are N possible distinct models $\{M_i\}$ that explain the data D.

$$P(M_i|D) = \frac{P(D|M_i)P(M_i)}{P(D)}$$

The prob that the model M_i is true among N possible models

$$\frac{P(M_i|D)}{\sum_j P(M_j|D)} = \frac{P(D|M_i)}{\sum_j P(D|M_j)}$$

if the prior is uniform $P(M_i) = P(M_j)$

Evidence

$$P(D|M_i) = \int P(D|\{\theta\}, M_i) P(\{\theta\}|M_i) d\{\theta\}$$

Bayesian inference for model parameters

Find the best parameter set for a given data set D if a specific model (M_i) is given.

$$P(\{\theta_i\}|D, M_i) = \frac{P(D|\{\theta_i\}, M_i)P(\{\theta_i\}|M_i)}{P(D|M_i)}$$

Brownian motion & diffusivity Irregular & incessant motion of pollen grains

R. Brown (1827), A brief account of microscopical observations on the particles contained in the pollen of plants and on the general existence of active molecules in organic and inorganic bodies

A. Einstein (1905), Investigations on the theory of the Brownian movement

On the movement of small particles suspended in a stationary liquid demanded by THE MOLECULAR-KINETIC THEORY OF HEAT

Mean-squared displacement (MSD) Diffusivity $\mathcal{D} = rac{k_B T}{6\pi\eta r}$ $\langle x^2(t) \rangle = 2\mathcal{D}t$

Real-Time Single-Molecule Imaging of the Infection Pathway of an **Adeno-Associated Virus**

Georg Seisenberger,¹ Martin U. Ried,² Thomas Endreß,¹ Hildegard Büning,² Michael Hallek,^{2,3} Christoph Bräuchle^{1*}

4 um

<Model> Stochastic theory for Brownian particles

The over-damped Langevin equation for a Brownian particle

<Model> Stochastic theory for Brownian particles

The Smoluchowski equation for a Brownian particle

$$\frac{\partial}{\partial t}p(x,t) = \mathcal{D}\frac{\partial}{\partial x}\left(\frac{1}{k_B T}\frac{\partial U(x)}{\partial x} + \frac{\partial}{\partial x}\right)p(x,t)$$

Example: Bayesian inference for diffusivity

What is the diffusivity of biomolecules (e.g., viruses) exploring the intracellular fluid in an experiment?

Example: Bayesian inference for diffusivity

$$P(\mathcal{D}|\{\Delta x_i\}, BM) = \frac{P(\{\Delta x_i\}|\mathcal{D}, BM)P(\mathcal{D}|BM)}{P(\{\Delta x_i\}|BM)}$$

The most probable diffusivity from the Bayesian inference is the one maximizing the Posterior probability

The likelihood function, a Gaussian weight, is obtained from the Langevin model for Brownian motion

$$P(\{\Delta x_i\}|\mathcal{D}, BM) = \left(\frac{1}{\sqrt{4\pi\mathcal{D}\Delta t}}\right)^N e^{-\sum_{j=1}^N \frac{(\Delta x_j)^2}{4\mathcal{D}\Delta t}}$$

The prior prob: based on our experience, we may look for the diffusivity in an interval 1

$$P(\mathcal{D}|BM) = \frac{1}{\mathcal{D}_M - \mathcal{D}_m} \text{ in } [\mathcal{D}_m, \mathcal{D}_M]$$

The evidence: marginalization of the likelihood function over the prior

$$P(\{\Delta x_i\}|\mathrm{BM}) = \int_0^{\mathcal{D}_M} d\mathcal{D}\left(\frac{1}{\sqrt{4\pi\mathcal{D}\Delta t}}\right)^N e^{-\sum_{j=1}^N \frac{(\Delta x_j)^2}{4\mathcal{D}\Delta t}} / \mathcal{D}_M$$

A simulated sample trajectory with a model parameter

$$x_t \sim N(0, \sqrt{2D}) \quad D = 6$$

Likelihood function

Bayesian inference for particle's diffusivity under finite experimental resolution

Single-particle tracking (SPT) & super-resolution imaging

Review: Manzo and Carcia-Parajo, Rep. Prog. Phys. 78, 124601 (2015)

Trajectory x(t) of individual particles

- Time resolution ~ from tens of microseconds to miliseconds

- Spatial resolution ~ tens or hundreds of nanometers

Nobel prize (2014): E. Betzig/S. Hell/W. Moerner for super-resolved fluorescence microscopy Nobel prize (2018): A. Ashkin for the optical tweezers and their applications to biological systems

Bayesian inference for particle's diffusivity under finite experimental resolution

The likelihood function in the presence of experimental noises

$$\Delta x_i^{(\text{ob})} = \Delta x_i + \eta_i$$

The noise is a Gaussian random variable: $\eta_i \sim \mathcal{N}(0, \sigma_{\text{noise}}^2)$

$$\mathcal{L}(\{x_i^{(\mathrm{ob})}\}|\vec{\theta}) = \prod_j \frac{\exp\left(-\frac{[x_j^{(\mathrm{ob})} - \tilde{x}_j]^2}{2\tilde{\sigma}_j^2}\right)}{\sqrt{2\pi\tilde{\sigma}_j^2}}$$

$$\tilde{x}_{j+1} = x_j - \frac{\sigma_{\mathrm{noise}}^2}{\tilde{\sigma}_j}(x_j - \tilde{x}_j) \qquad \qquad \tilde{\sigma}_j^2 = \sigma^2 + \sigma_{\mathrm{noise}}^2\left(2 - \frac{\sigma_{\mathrm{noise}}^2}{\tilde{\sigma}_j^2}\right)$$

Numerical test with noisy Brownian motion

M₀: Brownian motion (BM) M₁: *Noisy* Brownian motion (NBM)

Example: Identifying hidden diffusion states of MutS homolog proteins in DNA repair processes

In vivo anomalous diffusion (1)

$$\langle [x(t + \Delta) - x(t)]^2 \rangle_t \simeq 2D_{\alpha} \Delta^{\alpha}$$

Generalized anomaly exponent
diffusivity $0 < \alpha \lesssim 2$
 $0 < \alpha \lesssim 2$
 $\int_{0}^{0} \int_{0}^{0} \int_$

In vivo anomalous diffusion (2)

 $\langle x^2(t) \rangle \propto t^{\alpha} \ (\alpha \neq 1)$

Possible physical mechanisms

Molecular crowding

Random obstacles Fractal space

Polymeric environment

Viscoelastic response

Confinement, trap

Non-specific interactions Corrals

Non-equilibrium forces /fluctuations

Motor-driven active motion

Spatiotemporal inhomogeneity

Random energy landscape Space- or time-dependent diffusivity

Metzler, JHJ, Cherstvy, & Barkai, PCCP (2014); Song, Moon, JHJ, & Park, Nat Commun (2018); JHJ et al., PRX (2016)

PERSPECTIVE

View Article Online View Journal

Cite this: DOI: 10.1039/c4cp03465a

Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking

Ralf Metzler,*^{ab} Jae-Hyung Jeon,^{bc} Andrey G. Cherstvy^a and Eli Barkai^d

Process	WEB	$\langle x^2(t) \rangle$	$\left\langle \overline{\delta^2(arDelta)} ight angle$	Eqn	Ref.
Correlated jump lengths	Yes	$\simeq t^3$	$\simeq \Delta^2 t$	(48) and (49)	120
Lévy walk, $0 < \alpha < 1$	Yes	$\simeq A(\alpha)t^2$	$\simeq \frac{A(\alpha)}{1} \Delta^2$	(50)́ and (51)́	136 and 137
Lévy walk, $1 < \alpha < 2$	Yes	$\simeq A^*(\alpha)t^{3-\alpha}$	$\simeq \frac{A^{*}(\alpha)}{\alpha} \Delta^{3-\alpha}$	(50) and (52)	83, 136 and 138
Lévy flight	Yes	$=\infty[\langle \mathbf{x} ^q \rangle^{2/q} \simeq t^{2/\alpha}]$	$\simeq \Delta t^{2/\alpha-1}$		129, 137 and 275 ^{<i>a</i>}
FBM $0 < \alpha < 2$	No	$\simeq t^{\alpha}$	$\simeq \Delta^{\alpha}$	(58)	156, 166, 176 and 276
Brownian motion	No	$\simeq t$	$\simeq \Delta$	(3) and (12)	44, 277 and 278
FLE motion $0 < \alpha < 1$	No	$\simeq t^{lpha}$	$\simeq \Delta^{\alpha}$	(66)	156, 166 and 176
Fractal environment	No	$\simeq t^{2/d_{ m w}}$	$\simeq \Delta^{2/d_{\rm w}}$		50 and 218
HDP $K(x) = K_0 x ^{\beta}$	Yes	$\simeq t^{2/(2-\beta)}$	$\simeq \Delta t^{2/(2-\beta)-1}$	(90), (91) and (93)	197 and 203
Correlated waiting times	Yes	$\simeq t^{\gamma/(1+\gamma)}$	$\simeq \Delta t^{\gamma/(1+\gamma)-1}$	(8), (46) and (47)	120-122
Subdiffusive CTRW	Yes	$\simeq t^{lpha}$	$\simeq \Delta t^{\alpha-1}$	(8) and (20)	44, 63 and 64
Confined subdiffusive CTRW	Yes	$\simeq t^{0}$	$\simeq (\Delta/t)^{1-\alpha}$	(21)	45, 68 and 70
Quenched trap/patch models	Yes	$\simeq t^{\alpha}$	$\simeq \Delta t^{\alpha-1}$		198 and 279^{b}
Ageing CTRW	Yes	$\simeq \begin{cases} t/t_{\rm a}^{1-\alpha}, & t \ll t_{\rm a}, \\ t, & t \gg t_{\rm a} \end{cases}$	$\simeq \Lambda_{\alpha}(t_{\rm a}/t)\Delta t^{\alpha-1}$	(27) and (29)	73
Scaled Brownian motion	Yes	$\simeq t^{\alpha}$	$\simeq \Delta t^{\alpha-1}$	(8) and (80)	189 and 190
Ultraslow CTRW	Yes	$\simeq \log^{\alpha}(t)$	$\simeq \log^{\alpha}(t) \Delta/t$	(43) and (44)	110
Sinai (quenched)	Yes	$\simeq \log^4(t)$	$\simeq \log^4(t) \Delta/t$	(42)	110
CTRW in ageing environment	Yes	$\simeq \log(t)$	$\simeq \log(t)\Delta/t$	(40) and (41)	101
HDP $K(x) = (K_0/2)e^{-2x/x^*}$	Yes	$\simeq \log^2(t)$	$\simeq (\Delta/t)^{1/2}$	(94) and (95)	202

The Anomalous Diffusion Challenge

$$\begin{split} \mathrm{MSD}(\Delta) &= 2K_{\alpha}\Delta^{\alpha} \\ \mathrm{Diffusion\ model\ } M_i \in \{\mathrm{FBM,\ SBM,\ LW,\ CTRW,\ ATTM}\} \end{split}$$

Task 1. Inference of the anomalous diffusion exponent α **Task 2.** Classification of the underlying diffusion model **Task 3.** Trajectory segmentation

Collaborated with

Prof. M. A. Lomholt (Univ. Southern Denmark) Dr. S. Thapa (Tel Aviv University)

team/software	method
Anomalous Unicorns HYDRAS	Ensemble of CNN and RNN
BIT	Bayesian inference
DecBayComp <u>Gratin</u>	Graph neural network
DeepSPT	ResNet + XGBoost
eduN <u>RANDI</u>	RNN + Dense NN
Erasmus MC FEST	bi-LSTM + Dense NN
FCI	CNN
HNU Just LSTM it	LSTM
NOA	CNN + bi-I STM

Single-molecule experiments for MutS proteins diffusing along a mismatch-containing DNA

DNA SkyBridge D. Kim *et al., Nucleic Acids Res.* (2019)

Exp: J-B Lee's group (POSTECH)

Diffusion of MutS proteins is heterogeneous

Bayesian inference:

(1) From trajectories, identify the # of distinct diffusion states

(2) Estimate the diffusivity of each dynamic states

Multi-state Brownian motion model

• Multi-state Brownian motion

$$\begin{split} &\Delta x_t = \sqrt{2D_t t_0} \cdot \xi_t : \text{position} \\ &D_t \in \left\{ D^{(1)}, D^{(2)}, \dots, D^{(N)} \right\} : \text{diffusion coefficients} \\ &\xi_t \sim \mathcal{N}(0, 1) : \text{Gaussian noise} \\ &p_{ji} : \text{transition probability from } D^{(i)} \text{ to } D^{(j)} \end{split}$$

• Models M_N

M₁: one-state BM (N = 1)M₂: two-state BM (N = 2)M₃: three-state BM (N = 3)

Model inference

$$P(\mathbf{M}_{N} \text{ is true}) = \frac{P(\mathbf{M}_{N}|\text{Data})}{\sum_{\mathbf{M}_{I}} P(\mathbf{M}_{I}|\text{Data})} = \frac{P(\text{Data}|\mathbf{M}_{N})}{\sum_{\mathbf{M}_{I}} P(\text{Data}|\mathbf{M}_{I})}$$

Marginalization (evidence function) $\theta = (D^{(1)}, \dots, p_{11}, \dots)$

How to calculate: the nested sampling method or Akaike information criterion (AIC)

$$AIC = 2K_N - 2\log \mathcal{L}(\boldsymbol{\theta}_{MLE} | \{\Delta x_i\}, M_N)$$

♠

Parameter inference

$$P(\boldsymbol{\theta}|M_N, \text{Data}) = \frac{P(\text{Data}|M_N, \boldsymbol{\theta})P(\boldsymbol{\theta}|M_N)}{P(\text{Data}|M_N)}$$

Maximum a posterior (MAP): $\hat{\boldsymbol{\theta}}_{\text{MAP}}$ via the nested sampling method

• : prior distribution $\pi(\theta | M_i)$

Sampling towards MLE

Model and parameter inference for simulated multi-state Brownian motion

Simulation details: 3-state Brownian motion, 50 trajectories of the length *T*=200 $D^{(1)}=0.02, D^{(2)}=0.08, D^{(3)}=0.32$

Histogram of model inference

Histogram of parameter inference

			set1	$\operatorname{set2}$	set3	set4	$\mathbf{set5}$	$\mathbf{set6}$
F_1 score $E_4 = \frac{2TP}{T}$	$\mathbf{D} \; (\mu \mathrm{m}^2/\mathrm{s})$	N = 1 $N = 2$	(0.02) (0.02, 0.04)	(0.02) (0.02, 0.06)	(0.02) (0.02, 0.08)	(0.02) (0.02, 0.10)	(0.02) (0.02, 0.14)	(0.02) (0.02, 0.18)
		N = 3	$\left(0.02, 0.04, 0.06 ight)$	$\left(0.02, 0.06, 0.10 ight)$	$\left(0.02, 0.08, 0.14 ight)$	$\left(0.02, 0.10, 0.18 ight)$	$\left(0.02, 0.14, 0.26 ight)$	$\left(0.02, 0.18, 0.34 ight)$
		AIC	0.3667	0.5833	0.65	0.6667	0.7333	0.6833
	F_1 score	BIC	0.35	0.4333	0.5	0.5833	0.65	0.6667
		Bayesian	0.3667	0.5	0.65	0.7167	0.7333	0.7167
1 2TD \perp FD \perp FN								
$211 \pm 11 \pm 11$			set7	set8	set9	set10	set11	set 12
		N = 1	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
TP:True positiveFP:False positiveFN:False negative	$\mathbf{D} \; (\mu \mathrm{m}^2/\mathrm{s})$	N = 2	(0.02, 0.04)	(0.02, 0.06)	(0.02, 0.08)	(0.02, 0.10)	(0.02, 0.14)	(0.02, 0.18)
		N = 3	$\left(0.02, 0.04, 0.08 ight)$	$\left(0.02, 0.06, 0.18 ight)$	$\left(0.02, 0.08, 0.32 ight)$	$\left(0.02, 0.10, 0.50 ight)$	$\left(0.02, 0.14, 0.98 ight)$	$\left(0.02, 0.18, 1.62 ight)$
	F_1 score	AIC	0.3833	0.6	0.7	0.8	0.85	0.9333
		BIC	0.35	0.4333	0.5	0.6	0.7	0.7333
		Bayesian	0.3667	0.5333	0.7167	0.8833	0.9333	0.9667

Bayesian analysis for diffusion dynamics of MutS proteins

Experiment details: ATP-bound MutS sliding clamps, ~62 trajectories of the length T=150, time-resolution = 0.1 s, spatial resolution = 0.167 µm

ATP-bound MutS sliding clamps have three distinct diffusion states

Bayesian analysis for diffusion dynamics of MutS proteins

Residence time distributions of state 1, 2, & 3: exponential law $P(\tau) = \frac{1}{\langle \tau_i \rangle} \exp\left(-\frac{1}{\langle \tau_i \rangle}\tau\right)$

Probability density function for displacements: Gaussian

Bayesian analysis for diffusion dynamics of MutS proteins

MutS sliding clamps in a ATP-depleted solution (pilot study)

State 2 has an increased residence time

State 3 has an decreased residence time

Take-home message: "Life is physics"

In vivo anomalous transport in cells

Biophysics of human chromosome

Statistical physics of active particle/polymer

Single-molecule biophysics

(DNA, membrane, etc)

TBIO group

Thanks to

Bayesian inference study of anomalous transport Seongyu Park (Levy walks, MutS, PCNA)

Target sequence search of DNA proteins in chromosomes

References: S. Park, ..., J.-B. Lee, JHJ, *Discovering new diffusion states of MutS homologs from single-molecule trajectories*, manuscript in preparation

S. Thapha, S. Park, Y. Kim, JHJ, ..., M. Lomholt, *Bayesian inference of scaled versus fractional Brownian motion*, JPA **55**, 194003 (2022)

S. Park, S. Thapa, ..., JHJ, *Bayesian inference of Levy walks via hidden Markov models*, JPA **54**, 484001 (2021)

G. Munoz-Gil, ..., S. Park, ..., JHJ, ..., C. Manzo, *Objective comparison of methods to decode anomalous diffusion*, Nature Commun. **12**, 6253 (2021)

