RESEARCH
YST - Young Scientist Training Program
The search for quantum gravity as a quantization of General Relativity has been carried for a long time and recently has given promising results. The research had been evolved into various tracks, which extend from the perturbative to the non-perturbative approaches. Since gravity is perturbatively non-renormalizable, the non-perturbative approaches have the advantage to avoid the problem. They could be broadly categorized into two main branches: the string and non-string approach.
One of the candidates of the non-string approach is loop quantum gravity (LQG), which is standardly- based on the rigorous Dirac quantization procedure [1]. As a consequence of the theory, the spectrum of the area and volume of space are discrete, for the case of pure gravity with no matter-coupling. This indicates the existence of the quanta of space, described by spin-networks: a lattice-graph labeled by spin representations of SU(2). The graph may contain loops, where the SU(2) holonomies, describing the intrinsic curvature of a finite region of the space, are located.
054-279-1298
seramika.wahyoedi@apctp.org
534
534
Particle Physics/ Quantum Field Theory
Particle Physics/ Quantum Field Theory